본질적 특이점![]() ![]() 복소해석학에서 함수의 본질적 특이점(영어ːessential singularity)은 함수가 이상하게 움직이는 "심한" 특이점이다. 범주 본질적 특이점은 특별히 다루기 힘든 "나머지" 또는 기본 특이점 그룹이다: 정의에 의해 이것들은 특정 방법으로 처리할 수 있는 두 범주(제거 가능 특이점과 극점)에 해당하지 않는다. 공식적인 설명복소평면 C의 열린 부분집합 U를 생각하자. a 를 U의 원소라고 하고 f를 f : U \ {a} → C인 정칙함수라고 하자. 이 특이점 a가 극점이나 제거 가능 특이점이 아니라면 f 의 본질적 특이점이라고 한다. 예를 들면 함수 f(z) = e1/z는 z = 0에서 본질적 특이점을 가지고 있다. 다른 설명a를 복소수이고 f(z) 가 a에서 정의되어있지 않지만 복소평면의 일부 영역 U에서 해석적이고 a의 열린 근방이 U와 빠짐없이 만난다고 가정하자. 만약
만약 유사하게 만약
본질적 특이점을 특정화 하기 위한 다른 방법으로는 a에서 f의 로랑 급수는 무한히 많은 음의 항을 가진다(즉, 로랑 급수의 주요 부분은 무한 급수이다). 관련 정의는 에서 가 .[1] 본질적 특이점 주변에서의 정칙함수의 움직임은 카소라티-바이어슈트라스 정리와 상당히 강력한 피카르의 정리에 의해 증명된다. 후자는 본질적 특이점 a주변에서 함수 f는 하나를 제외하고 모든 복소수 값을 무한히 많이 가진다는 것을 말한다. 각주
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia