붙인 지붕
![]() 기하학에서 붙인 지붕은 두 지붕을 밑면끼리 붙인 형태이다. 각 지붕의 중간은 삼각형과 사각형이 번갈아 나타나기 때문에 두 종류의 붙인 지붕이 있다. 같은 면이 서로 붙었으면 맞붙인 지붕이다; 사각형이 삼각형에 붙었으면 비틀어 붙인 지붕이다. 지붕과 붙인 지붕은 각기둥, 쌍각뿔, 엇쌍각뿔과 같이 분류적으로 다면체의 무한한 집합으로 존재한다. 붙인 지붕 중 여섯 개는 정다각형 면을 가진다: 삼각, 사각 그리고 오각 맞- 그리고 비틀어 붙인 지붕이다. 비틀어 붙인 삼각지붕은 아르키메데스의 다면체, 육팔면체이다; 다른 다섯개는 존슨의 다면체이다. 높은 차수의 붙인 지붕은 옆면이 직사각형과 이등변삼각형으로 늘릴 수 있을 때 만들 수 있다. 붙인 지붕은 모든 꼭짓점이 네 개의 면을 가진다는 점에서 특별하다. 이것은 그 쌍대다면체의 모든 면이 사각형이라는 것을 의미한다. 가장 잘 알려진 예는 12개의 마름모 면으로 구성된 마름모십이면체이다. 맞붙인 형태 맞붙인 삼각지붕의 쌍대 역시 마름모십이면체와 유사한 십이면체이다. 하지만 이것은 길고 짧은 변이 둘레에 번갈아 나타나는 사다리꼴 면 6개를 가진다. 형태맞붙인 지붕의 집합
비틀어 붙인 지붕aA5 (rectified pentagonal antiprism) 다른 이름은 부풀린 각뿔이다. 이유는 비틀어 붙인 삼각지붕 즉 육팔면체가 정삼각뿔인 정사면체를 부풀려서 만들어지기 때문.
참고 자료
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia