축차가속완화법축차가속완화법(逐次加速緩和法,successive over-relaxation,SOR)은 가우스-자이델 방법의 수렴성을 가속시키는 반복법이다. 공식n개의 선형방정식과 미지수 x를 가진 사각형 시스템에서: 여기서 A는 대각성분 D, 하삼각행렬 부분 L, 상삼각행렬 부분 U의 합으로 행렬 분리될 수 있다.: 여기서 연립방정식을 아래와 같이 다시 쓰자. 상수 ω를 완화계수(relaxation factor)라고 하는데, 가우스-자이델 방법은 ω=1에 해당한다. 가우스-자이델 방법보다 x를 빠르게 바꾸는 가속완화(over-relaxation)를 위해서는 ω > 1이어야 한다. 반대로 ω < 1인 경우는 감속완화(under-relaxation)이라고 한다. 축차가속완화법은 왼쪽에 새로운 x를 놓고, 이전의 x는 오른쪽에 놓는 반복법이다. 해석학적으로, 다음과 같이 설명할 수 있다. 여기서 는 의 k번째 근사 또는 반복이고, 는 의 k+1번째 근사이다. 하지만 (D+ωL)이 하삼각행렬임을 활용하기 위해, x(k+1)의 각 원소는 전진대입(forward substitution)을 통해 순차적으로 구할 수 있다.: 수렴성1947년에 대칭 정부호 행렬에서는 가 일 때 성립함이 보여져, 이면 감속완화이든 가속완화이든 수렴한다는게 보여졌다. 가 1보다 조금 클때 가장 수렴이 빠르다. 같이 보기 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia