콤팩트성 정리수리논리학에서 콤팩트성 정리(compact性定理, 영어: compactness theorem)는 만약 어떤 1차 논리 이론의 모든 유한 부분 집합이 만족 가능하다면, 이론 전체가 만족 가능하다는 정리다. 1차 논리의 특징이며, 고차 논리나 무한 논리에서는 일반적으로 성립하지 않는다. 정의콤팩트성 정리에 따르면, 부호수 의 (등호를 포함하는) 1차 논리 이론 에 대하여, 다음이 서로 동치이다.
응용콤팩트성 정리를 이용하여, 어떤 1차 논리적 명제가 표수 0인 임의의 체에 대해 성립한다면, 상수 p가 존재해서 표수가 p보다 큰 임의의 체에 대해 이 명제가 성립함을 알 수 있다. 증명은 다음과 같다. φ가 그 명제일 때, 가정에 따라 그 부정 ¬φ와 체의 공리들 및 무한개의 명제들 1+1≠0, 1+1+1≠0, …로 이루어진 집합의 모형은 존재하지 않는다. 그러므로 그 집합의 어떤 유한 부분집합이 모형을 갖지 않으며, 이는 달리 말하면 표수가 몇몇 유한한 자연수들 중 하나가 아니면서 ¬φ가 성립하는 체가 존재하지 않는다는 뜻이므로 증명이 끝난다. 명제 논리의 콤팩트성 정리는 불 대수의 스톤 쌍대성에 따라, 스톤 공간에 대한 티호노프 정리(콤팩트 공간의 임의의 곱이 여전히 콤팩트 공간)와 동치이다.[1] "콤팩트성 정리"라는 이름은 이로부터 기인하였다. 역사쿠르트 괴델이 가산 부호수에 대한 콤팩트성 정리를 1930년에 증명하였다.[2] 아나톨리 말체프가 일반적인 경우를 1936년에 증명하였다.[3][4] 같이 보기각주
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia