ਚਾਰਜ ਡੈਂਸਟੀਇਲੈਕਟ੍ਰੋਮੈਗਨੇਟਿਜ਼ਮ ਅੰਦਰ, ਚਾਰਜ ਡੈਂਸਟੀ ਪ੍ਰਤਿ ਯੂਨਿਟ ਸਪੇਸ ਦੇ ਵੌਲੀਊਮ ਦੇ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਦਾ ਇੱਕ ਨਾਪ ਹੁੰਦੀ ਹੈ। ਕਿਉਂਕਿ ਇੱਕ ਚਾਰ ਹਮੇਸ਼ਾ ਹੀ ਬੁਨਿਆਦੀ ਚਾਰਜ e ਦੇ ਮਲਟੀਪਲਾਂ (ਗੁਣਾਂਕਾਂ) ਦੇ ਰੂਪ ਵਿੱਚ ਹੀ ਮੌਜੂਦ ਹੋ ਸਕਦਾ ਹੈ, ਇਸਲਈ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਹਮੇਸ਼ਾ ਹੀ ਡਿਸਕ੍ਰੀਟ (ਅਨਿਰੰਤਰ) ਰਹਿੰਦੀ ਹੈ। ਫੇਰ ਵੀ ਹਮੇਸ਼ਾ ਹੀ ਡਿਸਕ੍ਰੀਟ ਚਾਰਜਾਂ ਦੇ ਨਿਯਮਾਂ (ਟਰਮਾਂ) ਵਿੱਚ ਕੰਮ ਕਰਨਾ ਗੈਰ-ਪ੍ਰੈਕਟੀਕਲ ਰਹਿੰਦਾ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਕਿਸੇ ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਕੰਡਕਟਰ ਦੀ ਸਰਫੇਸ (ਸਤਹਿ) ਉੱਤੇ, ਅਸੀਂ ਮਾਈਕ੍ਰੋਸਕੋਪਿਕ (ਸੂਖਮ) ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਰਚਣਹਾਰਿਆਂ ਦੀ ਸਥਿਤੀਆਂ (ਲੋਕੇਸ਼ਨਾਂ) ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ (ਵਿਸ਼ੇਸ਼ ਤੌਰ 'ਤੇ) ਨਹੀਂ ਦਰਸਾ ਸਕਦੇ। ਫੇਰ ਵੀ, ਅਸੀਂ ਕੰਡਕਟਰ ਦੀ ਸਤਹਿ ਉੱਤੇ ਇੱਕ ਛੋਟਾ ਏਰੀਆ ਐਲੀਮੈਂਟ ΔS ਲੈ ਸਕਦੇ ਹਾਂ। ਇਹ ਏਰੀਆ ਐਲੀਮੈਂਟ ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਪੈਮਾਨੇ ਉੱਤੇ ਬਹੁਤ ਛੋਟਾ ਹੁੰਦਾ ਹੈ, ਪਰ ਬਹੁਤ ਸਾਰੇ ਇਲੈਕਟ੍ਰੌਨਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਵਾਸਤੇ ਕਾਫੀ ਵੱਡਾ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ΔQ ਇਸ ਐਲੀਮੈਂਟ ਉੱਤੇ ਚਾਰਜ ਦੀ ਮਾਤਰਾ ਹੋਵੇ, ਤਾਂ ਅਸੀਂ ਏਰੀਆ ਐਲੀਮੈਂਟ ਉੱਤੇ ਸਰਫੇਸ ਚਾਰਜ ਡੈਂਸਟੀ σ(ਸਿਗਮਾ) ਨੂੰ ਇਸ ਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ;
ਕੰਡਕਟਰ ਦੀ ਸਤਹਿ ਦੇ ਵੱਖਰੇ ਬਿੰਦੂਆਂ ਉੱਤੇ ਵੀ ਅਸੀਂ ਇਸੇ ਪ੍ਰੋਸੈੱਸ ਨੂੰ ਰਪੀਟ ਕਰਦੇ ਹਾਂ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਕੰਟੀਨਿਊਸ ਫੰਕਸ਼ਨ σ ਉੱਤੇ ਪਹੁੰਚਦੇ ਹਾਂ, ਜਿਸਨੂੰ ਸਰਫੇਸ ਚਾਰਜ ਡੈਂਸਟੀ ਕਹਿੰਦੇ ਹਨ।
ਇਸੇ ਅਧਾਰ ਉੱਤੇ, ਜਦੋਂ ਚਾਰਜ ਕਿਸੇ ਲਾਈਨ ਦੇ ਨਾਲ ਨਾਲ ਡਿਸਟ੍ਰੀਬਿਊਟ ਕੀਤਾ ਹੁੰਦਾ ਹੈ, ਭਾਵੇਂ ਲਾਈਨ ਸਿੱਧੀ ਹੋਵੇ ਜਾਂ ਮੁੜੀ ਹੋਈ ਵਕਰ ਦੇ ਰੂਪ ਵਿੱਚ ਹੋਵੇ, ਅਸੀਂ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿ; ਲੀਨੀਅਰ ਚਾਰਜ ਡੈਂਸਟੀ, λ= (ΔQ)/(Δl) ਜਿੱਥੇ Δl ਮਾਈਕ੍ਰੋਸਕੋਪਿਕ ਤੌਰ 'ਤੇ ਤਾਰ ਦਾ ਸੂਖਮ ਲਾਈਨ ਐਲੀਮੈਂਟ ਹੈ, ਜੋ ਬਹੁਤ ਜਿਆਦਾ ਸੰਖਿਆ ਵਿੱਚ ਮਾਈਕ੍ਰੋਸਕੋਪਿਕ ਚਾਰਜਡ ਰਚਣਹਾਰੇ ਕਣ ਸ਼ਾਮਿਲ ਕਰਦਾ ਹੈ ਅਤੇ ΔQ ਓਸ ਲਾਈਨ ਐਲੀਮੈਂਟ ਵਿੱਚ ਸਾਂਭਿਆ ਚਾਰਜ ਦਰਸਾਉਂਦਾ ਹੈ। λਦੀਆਂ ਯੂਨਿਟਾਂ ਕੂਲੌਂਬ/ਮੀਟਰ ਹਨ।
ਜਿੱਥੇ (ΔQ) ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਤੌਰ 'ਤੇ ਛੋਟੇ ਵੌਲੀਊਮ ਐਲੀਮੈਂਟ ΔV ਵਿੱਚ ਸ਼ਾਮਿਲ ਹੋਇਆ ਚਾਰਜ ਹੁੰਦਾ ਹੈ ਜੋ ਬਹੁਤ ਸਾਰੇ ਰਚਣਹਾਰੇ ਚਾਰਜਡ ਕਣ ਰੱਖਦਾ ਹੈ। ਰੋ (ρ) ਦੀਆਂ ਯੂਨਿਟਾਂ ਕੂਲੌਂਬ/(ਕਿਊਬਿਕ ਮੀਟਰ) ਹਨ। ਧਿਆਨ ਦੇਓ ਕਿ ਨਿਰੰਤਰ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਦੀ ਧਾਰਨਾ ਨਿਰੰਤਰ ਪੁੰਜ ਵਿਸਥਾਰ-ਵੰਡ ਦੀ ਮਕੈਨਿਕਸ ਵਾਲੀ ਧਾਰਨਾ ਨਾਲ ਮਿਲਦੀ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਤਰਲ ਪਦਾਰਥ ਦੀ ਡੈਂਸਟੀ ਬਾਰੇ ਗੱਲ ਕਰਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਇਸਦੀ ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਡੈਂਸਟੀ ਨੂੰ ਇੱਕ ਨਿਰੰਤਰ ਫਲੂਇਡ ਦੇ ਤੌਰ 'ਤੇ ਲੈ ਕੇ ਗੱਲ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹਾਂ ਅਤੇ ਉਸਦੇ ਡਿਸਕ੍ਰੀਟ ਰਚਣਹਾਰੇ ਤੱਤਾਂ ਨੂੰ ਇਗਨੋਰ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹਾਂ। ਨਿਰੰਤਰ ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਨ ਬਲਕਿਸੇ ਨਿਰੰਤਰ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਕਾਰਣ ਫੋਰਸ ਨੂੰ ਡਿਸਕ੍ਰੀਟ ਚਾਰਜਾਂ ਦੇ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਲਈ ਹੀ ਵਰਤੇ ਜਾਂਦੇ ਤਰੀਕੇ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਜਦੋਂ ΔV ➙ 0 ਨੇੜੇ ਪਹੁੰਚਣ ਲੱਗਦਾ ਹੈ ਤਾਂ, ਅਸੀਂ ਕੁੱਲ ਫੋਰਸ ਨੂੰ ਜੋੜ ਦੀ ਜਗਹ ਇੰਟਗ੍ਰਲ ਬਣਾ ਸਕਦੇ ਹਾਂ ਤੇ ਇੰਝ ਲਿਖ ਸਕਦੇ ਹਾਂ;
ਇਸੇ ਤਰਾਂ ਅਸੀਂ, ਚਾਰਜ ਦੀ ਨਿਰੰਤਰ ਲਾਈਨ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਨ ਪੈਦਾ ਹੋਏ ਕੁੱਲ ਫੋਰਸ ਨੂੰ ਲਿਖ ਸਕਦੇ ਹਾਂ;
ਅਤੇ ਚਾਰਜ ਦੇ ਨਿਰੰਤਰ ਸਰਫੇਸ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਣ ਪੇਦਾ ਹੋਏ ਫੋਰਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ;
ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਚਾਰਜ ਡੈਂਸਟੀਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ, ਚਾਰਜ ਡੈਂਸਟੀ ρq ਇਸ ਇਕੁਏਸ਼ਨ ਨਾਲ ਵੇਵ ਫੰਕਸ਼ਨ ψ(r) ਨਾਲ ਸਬੰਧ ਰੱਖਦੀ ਹੈ; ਜਿੱਥੇ q ਕਣ ਦਾ ਚਾਰਜ ਹੁੰਦਾ ਹੈ ਅਤੇ |ψ(r)|2 = ψ*(r)ψ(r), ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਡੈਂਸਟੀ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਪੁਜ਼ੀਸ਼ਨ r ਉੱਤੇ ਸਥਿਤ ਕਿਸੇ ਕਣ (ਪਾਰਟੀਕਲ) ਦੀ ਪ੍ਰਤਿ ਯੂਨਿਟ ਵੌਲੀਊਮ ਵਾਲੀ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਵੇਵ ਫੰਕਸ਼ਨ ਨੂੰ ਨੌਰਮਲਾਇਜ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ – ਤਾਂ ਖੇਤਰ r ∈ R ਅੰਦਰ ਔਸਤਨ ਚਾਰਜ ਇਹ ਹੁੰਦਾ ਹੈ; ਜਿੱਥੇ d3r 3-ਅਯਾਮੀ ਪੁਜ਼ੀਸ਼ਨ ਸਪੇਸ ਉੱਤੇ ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਨਾਪ ਹੁੰਦਾ ਹੈ। ਇਹ ਵੀ ਦੇਖੋਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
|
Portal di Ensiklopedia Dunia