ਕੰਡਕਟਿੰਗ ਮਟੀਰੀਅਲ ਦੇ ਕਿਸੇ ਇਨਫਾਇਨਾਈਟ (ਅਨੰਤ) ਸ਼ੀਟ ਉੱਤੇ ਲਮਕਾਏ ਕਿਸੇ ਪੋਆਇੰਟ ਪੌਜ਼ਟਿਵ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਤੋਂ ਉਤਪੰਨ ਹੋ ਰਹੀਆਂ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਲਾਈਨਾਂ
ਬਿਜਲੀ ਖੇਤਰ ਉਹ ਖੇਤਰ ਜਿੱਥੇ ਬਿਜਲੀ ਚਾਰਜ ਦਾ ਬਲ ਮਹਿਸੂਸ ਹੁੰਦਾ ਹੈ।
ਕੋਈ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਇੱਕ ਅਜਿਹੀ ਵੈਕਟਰ ਫੀਲਡ ਹੁੰਦੀ ਹੇ ਜੋ ਸਪੇਸ ਅੰਦਰਲੇ ਹਰੇਕ ਬਿੰਦੂ ਨੂੰ ਕੂਲੌਂਬ ਫੋਰਸ ਨਾਲ ਜੋੜਦੀ ਹੈ ਜੋ ਓਸ ਬਿੰਦੂ ਉੱਤੇ ਰੱਖੇ ਕਿਸੇ ਅਤੀ-ਸੂਖਮ ਟੈਸਟ ਚਾਰਜ ਦੁਆਰਾ ਪ੍ਰਤਿ ਯੂਨਿਟ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਅਨੁਭਵ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।[1] ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡਾਂ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜਾਂ ਦੁਆਰਾ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਸਮੇਂ ਨਾਲ ਤਬਦੀਲ ਹੁੰਦੀਆਂ ਮੈਗਨੇਟਿਕ ਫੀਲਡਾਂ ਦੁਆਰਾ ਇੰਡਿਊਸ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਮੈਗਨੇਟਿਕ ਫੀਲਡ ਨਾਲ ਮਿਲ ਕੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਰਚਦੀ ਹੈ।
ਪਰਿਭਾਸ਼ਾ
ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਪੋਆਇੰਟ ਉੱਤੇ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ , ਓਸ (ਵੈਕਟਰ) ਫੋਰਸ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੋਰਸਾਂ (ਜਿਵੇਂ ਲੌਰੰਟਜ਼ ਫੋਰਸ) ਦੁਆਰਾ ਯੂਨਿਟ ਚਾਰਜ ਦੇ ਕਿਸੇ ਸਟੇਸ਼ਨਰੀ ਟੈਸਟ ਪਾਰਟੀਕਲ ਉੱਤੇ ਲਗਦਾ ਹੈ। ਚਾਰਜ ਵਾਲ਼ਾ ਕੋਈ ਪਾਰਟੀਕਲ ਇੱਕ ਫੋਰਸ ਦਾ ਸਾਹਮਣਾ ਕਰਦਾ ਹੈ।
ਇਸਦੀਆਂ SI ਯੂਨਿਟਾਂ ਨਿਊਟਨ ਪ੍ਰਤਿ ਕੂਲੌਂਬ (N⋅C−1) ਹਨ ਜਾਂ ਇਸਦੇ ਸਮਾਨ ਹੀ, ਵੋਲਟ ਪ੍ਰਤਿ ਮੀਟਰ (V⋅m−1) ਹਨ, ਜੋ SI ਬੇਸ ਯੂਨਿਟਾਂ ਦੇ ਨਿਯਮਾਂ ਮੁਤਾਬਿਕ kg⋅m⋅s−3⋅A−1 ਹਨ।
ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਦੇ ਸੋਰਸ
ਕਾਰਣ ਅਤੇ ਵਿਵਰਣ
ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡਾਂ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜਾਂ ਦੁਆਰਾ ਜਾਂ ਬਦਲ ਰਹੀਆਂ ਚੁੰਬਕੀ ਫੀਲਡਾਂ ਦੁਆਰਾ ਬਣਦੀਆਂ ਹਨ। ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਵਾਲਾ ਅਸਰ ਗਾਓਸ ਦੇ ਨਿਯਮ ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਤੇ ਮੈਗਨੈਟਿਕ ਫੀਲਡਾਂ ਵਾਲਾ ਅਸਰ ਇੰਡਕਸ਼ਨ ਦੇ ਫੈਰਾਡੇ ਦੇ ਨਿਯਮ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਦੋਵੇਂ ਮਿਲ ਕੇ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਦੇ ਬੀਹੇਵੀਅਰ ਨੂੰ ਚਾਰਜ ਰੀਪਾਰਟੀਸ਼ਨ ਅਤੇ ਚੁੰਬਕੀ ਫੀਲਡ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਲਈ ਕਾਫੀ ਹਨ। ਫੇਰ ਵੀ, ਕਿਉਂਕਿ ਮੈਗਨੇਟਿਕ ਫੀਲਡ ਨੂੰ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਦੇ ਹੀ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਇਸਲਈ ਦੋਵੇਂ ਫੀਲਡਾਂ ਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਮੇਲ ਲਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਰਲ ਕੇ ਮੈਕਸਵੈੱਲ ਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਰਚਦੀਆਂ ਹਨ ਜੋ ਦੋਵੇਂ ਫੀਲਡਾਂ ਨੂੰ ਚਾਰਜਾਂ ਅਤੇ ਇਲੈਕਟ੍ਰਿਕ ਕਰੰਟਾਂ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਦਰਸਾਉਂਦੀਆਂ ਹਨ।
ਕਿਸੇ ਇੱਕਸਾਰ ਅਵਸਥਾ (ਸਟੇਸ਼ਨਰੀ ਚਾਰਜਾਂ ਅਤੇ ਕਰੰਟਾਂ) ਦੇ ਸਪੈਸ਼ਲ ਕੇਸ (ਖਾਸ ਮਾਮਲੇ) ਵਿੱਚ, ਮੈਕਸਵੈੱਲ-ਫੈਰਾਡੇ ਇੰਡਕਟਿਵ ਅਸਰ ਅਲੋਪ ਹੋ ਜਾਂਦਾ ਹੈ। ਨਤੀਜਨ ਦੋਵੇਂ ਇਕੁਏਸ਼ਨਾਂ (ਸਮੀਕਰਨਾਂ) (ਗਾਓਸ ਦਾ ਨਿਯਮ ਅਤੇ ਫੈਰਾਡੇ ਦਾ ਨਿਯਮ ਜਿਸ ਵਿੱਚ ਕੋਈ ਵੀ ਇੰਡਕਸ਼ਨ ਟਰਮ ਨਹੀਂ ਹੁੰਦੀ), ਰਲ ਕੇ ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ ਬਣਾਉਂਦੀਆਂ ਹਨ, ਜਿਸਨੂੰ ਕਿਸੇ ਚਾਰਜ ਡੈਂਸਟੀ ( ਸਪੇਸ ਵਿੱਚ ਪੁਜੀਅਨ ਨੂੰ ਦਰਸਾਉਂਦੀਆਂ ਹਨ) ਵਾਸਤੇ

ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਵੈਕੱਮ ਦੀ ਪਰਮਿਟੀਵਿਟੀ , ਜਰੂਰ ਹੀ ਸਬਸਟੀਟਿਊਟ ਕਰ ਦੇਣੀ ਚਾਹੀਦੀ ਹੈ ਜੇਕਰ ਚਾਰਜਾਂ ਨੂੰ ਗੈਰ-ਖਾਲੀ ਮੀਡੀਆ (ਮਾਧਿਅਮ) ਵਿੱਚ ਲਿਆ ਜਾਂਦਾ ਹੈ।
ਨਿਰੰਤਰ ਬਨਾਮ ਅਨਿਰੰਤਰ ਚਾਰਜ ਰੀਪਾਰਟੀਸ਼ਨ
ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਨਿਰੰਤਰ ਪ੍ਰਸਤੁਤੀ ਵਿੱਚ ਬੇਹਤਰ ਦਰਸਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਫੇਰ ਵੀ ਚਾਰਜਾਂ ਨੂੰ ਕਦੇ ਕਦੇ ਸਭ ਤੋਂ ਬੇਹਤਰ ਤੌਰ ਤੇ ਡਿਸਕ੍ਰੀਟ ਬਿੰਦੂਆਂ ਦੇ ਤੌਰ ਤੇ ਦਰਸਾਉਣਾ ਠੀਕ ਰਹਿੰਦਾ ਹੈ; ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕੁੱਝ ਮਾਡਲ ਇਲੈਕਟ੍ਰੌਨਾਂ ਨੂੰ ਅਜਿਹੇ ਪੋਆਇੰਸ ਸੋਰਸਾਂ (ਸੋਮਿਆਂ੦ ਦੇ ਤੌਰ ਤੇ ਦਰਸਾ ਸਕਦੇ ਹਨ ਜਿੱਥੇ ਚਾਰਜ ਡੈਂਸਟੀ ਸਪੇਸ ਦੇ ਇੱਕ ਅਤਿਸੂਖਮ ਟੁਕੜੇ ਉੱਤੇ ਅਨੰਤ ਹੁੰਦੀ ਹੈ।
ਕੋਈ ਚਾਰਜ ਜੋ ਉੱਤੇ ਸਥਿਤ ਹੋਵੇ, ਗਣਿਤਿਕ ਤੌਰ ਤੇ ਇੱਕ ਚਾਰਜ ਡੈਂਸਟੀ ਦੇ ਤੌਰ ਤੇ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿੱਥੇ (ਤਿੰਨ ਡਾਇਮੈਨਸ਼ਨਾਂ ਅੰਦਰ) ਡੀਰਾਕ ਡੈਲਟਾ ਫੰਕਸ਼ਨ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਇਸਦੇ ਉਲਟ, ਕਿਸੇ ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਨੂੰ ਕਈ ਛੋਟੇ ਪੋਆਇੰਟ ਚਾਰਜਾਂ ਦੁਆਰਾ ਸੰਖੇਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਸੁਪਰਪੁਜੀਸ਼ਨ ਪ੍ਰਿੰਸੀਪਲ
ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡਾਂ ਸੁਪਰਪੁਜੀਸ਼ਨ ਪ੍ਰਿੰਸੀਪਲ ਦੀ ਪਾਲਣਾ ਕਰਦੀਆਂ ਹਨ, ਕਿਉਂਕਿ ਮੈਕਸਵੈੱਲ ਇਕੁਏਸ਼ਨਾਂ ਲੀਨੀਅਰ (ਰੇਖਿਕ) ਹੁੰਦੀਆਂ ਹਨ। ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ, ਜੇਕਰ ਅਤੇ ਓਹ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡਾਂ ਹੋਣ ਜੋ ਚਾਰਜਾਂ ਅਤੇ ਦੀ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਤੋਂ ਪੈਦਾ ਹੋਈਆਂ ਹੋਣ, ਤਾਂ ਚਾਰਜਾਂ ਦੀ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਇੱਕ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਬਣਾਏਗੀ; ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ ਵੀ ਚਾਰਜ ਡੈਂਸਟੀ ਅੰਦਰ ਲੀਨੀਅਰ ਹੀ ਰਹਿੰਦਾ ਹੈ।
ਇਹ ਪ੍ਰਿੰਸੀਪਲ ਬਹੁਤ ਬਿੰਦੂ ਚਾਰਜਾਂ ਦੁਆਰਾ ਪੈਦਾ ਕੀਤੀ ਗਈ ਫੀਲਡ ਦਾ ਹਿਸਾਬ ਲਗਾਉਣ ਲਈ ਫਾਇਦੇਮੰਦ ਰਹਿੰਦਾ ਹੈ। ਜੇਕਰ ਚਾਰਜ ਸਪੇਸ ਵਿੱਚ ਉੱਤੇ ਸਟੇਸ਼ਨਰੀ ਹੋਣ, ਤਾਂ ਕਰੰਟਾਂ ਦੀ ਗੈਰ-ਹਾਜ਼ਰੀ ਵਿੱਚ, ਸੁਪਰਪੁਜੀਸ਼ਨ ਪ੍ਰਿੰਸੀਪਲ ਸਾਬਤ ਕਰਦਾ ਹੈ ਕਿ ਨਤੀਜਨ ਫੀਲਡ ਕੂਲੌਂਬ ਦੇ ਨਿਯਮ ਰਾਹੀਂ ਦਰਸਾਏ ਜਾਂਦੇ ਹਰੇਕ ਪਾਰਟੀਕਲ ਦੁਆਰਾ ਪੈਦਾ ਹੋਈਆਂ ਫੀਲਡਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ:

ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਫੀਲਡ
ਕਿਸੇ ਪੌਜ਼ਟਿਵ (ਲਾਲ ਰੰਗ) ਅਤੇ ਇੱਕ ਨੈਗਟਿਵ (ਨੀਲਾ ਰੰਗ) ਚਾਰਜ ਦੁਆਲ਼ੇ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਸਮਝਾਉਂਦਾ ਚਿੱਤਰ
ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਰੇਖਾਵਾਂ ਨੂੰ ਸਮਝਾਉਂਦੇ ਪ੍ਰਯੋਗ। ਕਿਸੇ ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਇੰਡਕਸ਼ਨ ਮਸ਼ੀਨ ਨਾਲ ਜੁੜਿਆ ਇੱਕ ਇਲੈਕਟ੍ਰੋਡ ਕਿਸੇ ਤੇਲ ਨਾਲ ਭਰੇ ਕੰਟੇਨਰ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਤੇਲ ਨੂੰ ਇੱਕ ਡਾਇਲੈਕਟ੍ਰਿਕ ਮਾਧਿਅਮ ਮੰਨਦੇ ਹੋਏ, ਜਦੋਂ ਇਲੈਕਟ੍ਰੋਡ ਦੇ ਵਿੱਚੋਂ ਕਰੰਟ ਵਹਿੰਦਾ ਹੈ, ਤਾਂ ਕਣ ਆਪਣੇ ਆਪ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਅਰੇਂਜ ਕਰ ਲੈਂਦੇ ਹਨ ਤਾਂ ਜੋ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਲਾਈਨਾਂ ਰੇਖਾਵਾਂ ਦਿਖਾਉਂਦੇ ਲੱਗਣ
ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਫੀਲਡਾਂ ਅਜਿਹੀਆਂ E-ਫੀਲਡਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਵਕਤ ਪਾ ਕੇ ਤਬਦੀਲ ਨਹੀਂ ਹੁੰਦੀਆਂ, ਜੋ ਉਦੋਂ ਵਾਪਰਦੀਆਂ ਹਨ ਜਦੋਂ ਚਾਰਜ ਅਤੇ ਕਰੰਟ ਸਟੇਸ਼ਨਰੀ ਹੁੰਦੇ ਹਨ। ਇਸ ਮਾਮਲੇ ਵਿੱਚ, ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ ਪੂਰੀ ਤਰਾਂ ਫੀਲਡ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।
ਇਲੈਕਟ੍ਰਿਕ ਪੁਟੈਂਸ਼ਲ
ਜੇਕਰ ਕੋਈ ਸਿਸਟਮ ਸਟੈਟਿਕ ਹੋਵੇ, ਕਿ ਚੁੰਬਕੀ ਫੀਲਡਾਂ ਵਕਤ ਪਾ ਕੇ ਤਬਦੀਲ ਨਾ ਹੋਣ, ਤਾਂ ਫੈਰਾਡੇ ਦੇ ਨਿਯਮ ਮੁਤਾਬਿਕ, ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਕਰਲ-ਫਰੀ (ਕੁੰਡਲੀ-ਮੁਕਤ) ਹੁੰਦੀ ਹੈ। ਇਸ ਮਾਮਲੇ ਵਿੱਚ, ਇੱਕ ਇਲੈਕਟ੍ਰਿਕ ਪੁਟੈਂਸ਼ਲ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਇੱਕ ਫੰਕਸ਼ਨ ਕਿ
.[2]
ਇਸ ਦੀ ਤੁਲਨਾ ਗ੍ਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਂਸ਼ਲ ਨਾਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।
ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਅਤੇ ਗ੍ਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਦਰਮਿਆਨ ਸਮਾਨਤਾਵਾਂ
ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ, ਜੋ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜਾਂ ਦੀ ਪਰਸਪਰ ਕ੍ਰਿਆ ਦਰਸਾਉਂਦਾ ਹੈ:

ਨਿਊਟਨ ਦੇ ਬ੍ਰਹਿਮੰਡੀ ਗਰੂਤਾਕਰਸ਼ਨ ਦੇ ਨਿਯਮ ਨਾਲ ਮਿਲਦਾ ਜੁਲਦਾ ਹੈ।

(ਜਿੱਥੇ ).
ਇਸ ਤੋਂ ਇਹ ਸੁਝਾਅ ਮਿਲਦਾ ਹੈ ਕਿ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਅਤੇ ਗ੍ਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ g ਦਰਮਿਆਨ, ਜਾਂ ਇਹਨਾਂ ਦੇ ਸਬੰਧਤ ਪੁਟੈਂਸ਼ਲਾਂ ਦਰਮਿਆਨ ਸਮਾਂਤ੍ਰਾਤਾਵਾਂ ਹਨ। ਇਸ ਸਮਾਂਤ੍ਰਾਤਮਿਕਤਾ ਕਾਰਨ ਮਾਸ ਨੂੰ ਕਦੇ ਕਦੇ ਗ੍ਰੈਵੀਟੇਸ਼ਨਲ ਚਾਰਜ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। [ਹਵਾਲਾ ਲੋੜੀਂਦਾ]
ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਅਤੇ ਗ੍ਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਦੋਵੇਂ ਹੀ ਸੈਂਟਰਲ, ਕੰਜ਼੍ਰਵੇਟਿਵ ਫੋਰਸ ਹਨ ਜੋ ਇਨਵਰਸ ਸਕੁਏਅਰ ਨਿਯਮ ਦੀ ਪਾਲਨਾ ਕਰਦੇ ਹਨ।
ਯੂਨੀਫੌਰਮ ਫੀਲਡਾਂ
ਇੱਕ ਯੂਨੀਫੌਰਮ ਫੀਲਡ ਉਹ ਫੀਲਡ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਬਿੰਦੂ ਉੱਤੇ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਸਥਰ ਰਹਿੰਦੀ ਹੋਵੇ। ਇਸਨੂੰ ਸੰਖੇਪਿਤ ਕਰਨ ਵਾਸਤੇ ਦੋ ਦੋ ਕੰਡਕਟਿੰਗ ਪਲੇਟਾਂ ਨੂੰ ਇੱਕ ਦੂਜੀ ਦੇ ਸਮਾਂਤਰ (ਪੈਰਲਲ) ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦਰਮਿਆਨ ਇੱਕ ਵੋਲਟੇਜ (ਪੁਟੈਂਸ਼ਲ ਅੰਤਰ) ਕਾਇਮ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ; ਹੱਦ ਪ੍ਰਭਾਵਾਂ ਕਾਰਨ ਇਹ ਸਿਰਫ ਇੱਕ ਸੰਖੇਪ ਅਨੁਮਾਨ ਹੀ ਹੁੰਦਾ ਹੈ (ਪਲੇਨਾਂ ਦੇ ਕਿਨਾਰਿਆਂ ਨਜ਼ਦੀਕ, ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਫਟ ਜਾਂਦੀ ਹੈ ਕਿਉਂਕਿ ਪਲੇਨ ਨਿਰੰਤਰ ਨਹੀਂ ਰਹਿੰਦਾ)। ਅਨੰਤ ਪਲੇਨ ਲੈਂਦੇ ਹੋਏ, ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਦਾ ਮੈਗਨੀਟਿਊਡ ਇਹ ਬਣੇਗਾ:

ਜਿੱਥੇ Δϕ ਪਲੇਟਾਂ ਦਰਮਿਆਨ ਪੁਟੈਂਸ਼ਲ ਡਿਫ੍ਰੈਂਸ ਹੁੰਦਾ ਹੈ ਅਤੇd ਪਲੇਟਾਂ ਨੂੰ ਨਿਖੇੜਨ ਵਾਲਾ ਫਾਸਲਾ ਹੈ। ਨੈਗਟਿਵ ਚਾਰਜ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ ਜਿਵੇਂ ਹੀ ਪੌਜ਼ਟਿਵ ਚਾਰਜ ਪਰਾਂ ਧੱਕਦਾ ਹੈ, ਇਸਲਈ ਇੱਕ ਪੌਜ਼ਟਿਵ ਚਾਰਜ ਵਾਲੀ ਪਲੇਟ ਤੋਂ ਪੌਜ਼ਟਿਵ ਚਾਰਜ ਪਰਾਂ ਵੱਲ ਨੂੰ ਇੱਕ ਫੋਰਸ ਅਨੁਭਵ ਕਰੇਗਾ, ਜੋ ਓਸ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਤਾਂ ਜੋ ਵੋਲਟੇਜ ਵਧ ਸਕੇ। ਮਾਈਕ੍ਰੋ ਅਤੇ ਨੈਨੋ ਐਪਲੀਕੇਸ਼ਨਾਂ ਵਿੱਚ, ਜਿਵੇਂ ਸੇਮੀਕੰਡਕਟਰਾਂ ਦੇ ਸਬੰਧ ਵਿੱਚ, ਕਿਸੇ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਦਾ ਕੋਈ ਵਿਸ਼ੇਸ਼ ਸੰਖਿਅਕ ਮੁੱਲ (ਮੈਗਨੀਟਿਊਡ) 106 V⋅m−1 ਦੇ ਲੱਗਪਗ ਹੰਦਾ ਹੈ, ਜੋ 1 µm ਦੂਰ ਰੱਖੇ ਹੋਏ ਕੰਡਕਟਰਾਂ ਦਰਮਿਆਨ 1 ਵੋਲਟ ਦੇ ਦਰਜੇ ਦੀ ਵੋਲਟੇਜ ਲਾਗੂ ਕਰਨ ਨਾਲ ਸਾਂਭਿਆ ਜਾਂਦਾ ਹੈ।
ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕ ਫੀਲਡਾਂ
ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕ ਫੀਲਡਾਂ ਓਹ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਵਕਤ ਬੀਤਣ ਤੇ ਬਦਲਦੀਆਂ ਨਹੀਂ, ਜਿਵੇਂ ਜਦੋਂ ਚਾਰਜ ਗਤੀਸ਼ੀਲ ਹੁੰਦੇ ਹਨ।
ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਓਸ ਮਾਮਲੇ ਵਿੱਚ ਚੁੰਬਕੀ ਫੀਲਡ ਦੀ ਫੀਲਡ ਦੇ ਤੌਰ ਤੇ ਸੁਤੰਤਰ ਤੌਰ ਤੇ ਨਹੀਂ ਦਰਸਾਈ ਜਾ ਸਕਦੀ। ਜੇਕਰ A ਮੈਗਨੈਟਿਕ ਵੈਕਟਰ ਪੁਟੈਂਸ਼ਲ ਹੋਵੇ, ਜੋ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੋਵੇ ਕਿ
,
ਤਾਂ ਅਜੇ ਵੀ ਇੱਕ ਇਲੈਕਟ੍ਰਿਕ ਪੁਟੈਂਸ਼ਲ ਇਸਤਰਾੰ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ:

ਇਸ ਸਮੀਕਰਨ ਦੀ ਕਰਲ ਲੈਂਦੇ ਹੋਏ ਫੈਰਾਡੇ ਦਾ ਇੰਡਕਸ਼ਨ ਨਿਯਮ ਰਿਕਵਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:[3]

ਜੋ ਇੱਕ ਬਾਦ ਵਿੱਚ ਅਨੁਮਾਨਿਤ ਕੀਤੂ ਗਈ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਵਾਸਤੇ ਪੁਰਾਣੀ ਕਿਸਮ ਦਾ ਸਪਸ਼ਟੀਕਰਨ ਕਰਦੀ ਹੈ।
ਆਹ ਵੀ ਵੇਖੋ
ਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
|