ਸਪੇਸ (ਗਣਿਤ)![]() ਗਣਿਤ ਅੰਦਰ, ਸਪੇਸ ਇੱਕ ਸੈੱਟ ਹੁੰਦਾ ਹੈ (ਜਿਸਨੂੰ ਕਦੇ ਕਦੇ ਕਿਸੇ ਜੋੜੀ ਗਈ ਬਣਤਰ ਵਾਲਾ ਇੱਕ ਬ੍ਰਹਿਮੰਡ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।) ਗਣਿਤਿਕ ਸਪੇਸਾਂ ਅਕਸਰ ਇੱਕ ਪਦਕ੍ਰਮ ਸਮੱਸਿਆ ਰਚਦੀਆਂ ਹਨ, ਯਾਨਿ ਕਿ, ਇੱਕ ਸਪੇਸ ਕਿਸੇ ਪੇਰੈਂਟ (ਮਾਪਾ) ਸਪੇਸ ਦੇ ਲੱਛਣ ਸਮਾ ਕੇ ਰੱਖ ਰੱਖਦੀ ਹੋ ਸਕਦੀ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਸਾਰੀਆਂ ਇਨਰ ਪ੍ਰੋਡਕਟ ਸਪੇਸਾਂ, ਨੌਰਮਡ ਵੈਕਟਰ ਸਪੇਸਾਂ ਵੀ ਹੁੰਦੀਆਂ ਹਨ, ਕਿਉਂਕਿ ਇਨਰ ਪ੍ਰੋਡਕਟ, ਇਨਰ ਪ੍ਰੋਡਕਟ ਸਪੇਸ ਉੱਤੇ ਇੰਝ ਇੱਕ ਨੌਰਮ ਇੰਡਿਊਸ ਕਰਦਾ ਹੈ ਕਿ: ਜਿੱਥੇ ਦੋਹਰੀਆਂ ਖੜਵੀਆਂ ਰੇਖਾਵਾਂ ਵਿੱਚ ਬੰਦ ਕੀਤਾ ਨੌਰਮ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਅਤੇ ਇਨਰ ਪ੍ਰੋਡਕਟ ਨੂੰ ਐਂਗਲ ਬ੍ਰੈਕਟਾਂ ਵਿੱਚ ਬੰਦ ਕੀਤਾ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। ਅਜੋਕਾ ਗਣਿਤ ਸਪੇਸ ਨੂੰ ਕਲਾਸੀਕਲ ਗਣਿਤ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਬਹੁਤ ਜਿਆਦਾ ਵੱਖਰੀ ਚੀਜ਼ ਸਮਝਦਾ ਹੈ। ਇਤਿਹਾਸਰੇਖਾਗਣਿਤ ਦੇ ਸੁਨਹਿਰੀ ਕਾਲ ਤੋਂ ਪਹਿਲਾਂਸੁਨਹਿਰੀ ਕਾਲ ਅਤੇ ਬਾਦ ਦਾ ਸਮਾਂ: ਨਾਟਕੀ ਤਬਦੀਲੀਸਪੇਸਾਂ ਦਾ ਵਰਗੀਕਰਨਤਿੰਨ ਵਰਗੀਕਰਨ ਰੈਂਕਸਪੇਸਾਂ ਦਰਮਿਆਨ ਦੋ ਸਬੰਧ, ਅਤੇ ਸਪੇਸਾਂ ਦੀ ਇੱਕ ਵਿਸ਼ੇਸਤਾਸਪੇਸਾਂ ਦੀਆਂ ਕਿਸਮਾਂਲੀਨੀਅਰ ਅਤੇ ਟੌਪੌਲੌਜੀਕਲ ਸਪੇਸਾਂਅੱਫਾਈਨ ਅਤੇ ਪ੍ਰੋਜੈਕਟਿਵ ਸਪੇਸਾਂਮੈਟ੍ਰਿਕ ਅਤੇ ਯੂਨੀਫੌਰਮ ਸਪੇਸਾਂਨੌਰਮਡ, ਬਾਨਾਚ, ਇਨਰ ਪ੍ਰੋਡਕਟ, ਅਤੇ ਹਿਲਬ੍ਰਟ ਸਪੇਸਾਂਸਮੂਥ ਅਤੇ ਰੀਮਾਨੀਅਨ ਮੈਨੀਫੋਲਡਾਂ (ਸਪੇਸਾਂ)ਨਾਪਣਯੋਗ, ਨਾਪ, ਅਤੇ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਸਪੇਸਾਂਨਾਮ ਮੁਤਾਬਿਕ ਗਣਿਤਿਕ ਸਪੇਸ
ਇਹ ਵੀ ਦੇਖੋਨੋਟਸ
ਫੁੱਟਨੋਟਸਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
This article incorporates material from the Citizendium article "ਸਪੇਸ (ਗਣਿਤ)", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL. |
Portal di Ensiklopedia Dunia