Алгоритм МонтгомериАлгоритм Монтгомери — приём, позволяющий ускорить выполнение операций умножения и возведения в квадрат, необходимых при возведении числа в степень по модулю, когда модуль велик (порядка сотен бит). Был предложен в 1985 году Питером Монтгомери. По данным целым числам a, b < n, r, НОД алгоритм Монтгомери вычисляет
В приложениях обычно берётся , так как в этом случае деление с остатком и умножение на , используемые внутри алгоритма, происходят быстро. Умножение МонтгомериОпределим n-остаток (n-residue) числа как . Алгоритм Монтгомери использует свойство, что множество является полной системой вычетов, то есть содержит все числа от 0 до n-1. MonPro вычисляет . Результат является n-остатком от , так как
Определим n' так, что . и можно вычислить с помощью расширенного алгоритма Евклида. Функция 1. 2. 3. while 4. return При операции умножения и деления на выполняются очень быстро, так как представляют собой просто сдвиги бит, а при цикл в строчке 3 выполнится не более одного раза. Таким образом алгоритм Монтгомери быстрее обычного вычисления , которое содержит деление на n. Однако вычисление n' и перевод чисел в n-остатки и обратно — трудоёмкие операции, вследствие чего применять алгоритм Монтгомери при однократном вычислении произведения двух чисел представляется неразумным. Возведение в степень МонтгомериИспользование алгоритма Монтгомери оправдывает себя при возведении числа в степень по модулю . Функция 1. 2. 3. for i=j-1 downto 0 if then 4. return Возведение числа в степень битовой длины k алгоритмом «возводи в квадрат и перемножай» включает в себя от k до 2k умножений, где k имеет порядок сотен или тысяч бит. При использовании алгоритма возведения в степень Монтгомери объём дополнительных вычислений фиксирован (вычисления , , в начале и в конце), а операция MonPro выполняется быстрее обычного умножения по модулю[1], поэтому алгоритм возведения в степень Монтгомери даст выигрыш в производительности по сравнению с алгоритмом «возводи в квадрат и перемножай». Реализация алгоритма на JavaScriptfunction powMod(a, e, m) { var r = 1; while (e > 0) { console.log('A='+a+', E='+e+', R='+r); if ((e & 1) == 0) { e = e >> 1; a = (a * a) % m; } else { e = e - 1; r = (r * a) % m; } } console.log('A='+a+', E='+e+', R='+r); return r; } Примечания
Литература
|
Portal di Ensiklopedia Dunia