У этого термина существуют и другие значения, см. Бассейн.
Бассейны НьютонаБассейны Ньютона для полинома пятой степени . Разными цветами закрашены области притяжения для разных корней. Более тёмные области соответствуют большему числу итерацийБассейн Ньютона, ширина поиска 1.5.
Выбор начального приближения представляет особый интерес. Так как функция может иметь несколько нулей, в различных случаях метод может сходиться к различным значениям. Однако, какие именно области обеспечат сходимость к тому или иному корню?
Этот вопрос заинтересовал Артура Кэли ещё в 1879 году, однако разрешить его смогли лишь в 70-х годах двадцатого столетия с появлением вычислительной техники. Оказалось, что на пересечениях этих областей (их принято называть областями притяжения) образуются так называемые фракталы — бесконечные самоподобные геометрические фигуры.
Ввиду того, что Ньютон применял свой метод исключительно к полиномам, фракталы, образованные в результате такого применения, обрели название фракталов Ньютона или бассейнов Ньютона.
Три корня
Рассмотрим уравнение:
,
Оно имеет три корня. При выборе различных процесс будет сходиться к различным корням (областям притяжения). Артур Кэли поставил задачу описания этих областей, границы которых, как оказалось, имеют фрактальную структуру.
Построение
По следующей формуле:
Масштабирование
Если переместить центр экрана в точку и произвести масштабирование (), то вместо подстановки в многочлен , можно изменить сам многочлен. Так как , а , то . Так как , то .
Тогда
, считая новый многочлен , получаем
Литература
Акулич И. Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов. — М.: Высш. шк., 1986.
Амосов А. А., Дубинский Ю. А., Копченова Н. П. Вычислительные методы для инженеров. — М.: Мир, 1998.
Бахвалов Н. С., Жидков Н. П., Кобельков Г. Г. Численные методы. — 8-е изд. — М.: Лаборатория Базовых Знаний, 2000.
Вавилов С. И.Исаак Ньютон. — М.: Изд. АН СССР, 1945.
Волков Е. А. Численные методы. — М.: Физматлит, 2003.
Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М.: Мир, 1985.
Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1970. — С. 575-576.
Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. — Энергоатомиздат, 1972.
Максимов Ю. А.,Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. — М.: МИФИ, 1982.
Морозов А. Д. Введение в теорию фракталов. — МИФИ, 2002.
Мандельброт Б. Фрактальная геометрия природы. — М.: «Институт компьютерных исследований», 2002.
Пайтген Х.-О., Рихтер П. Х. Красота фракталов. — М.: «Мир», 1993.
Федер Е. Фракталы. — М: «Мир», 1991.
Фоменко А. Т. Наглядная геометрия и топология. — М.: изд-во МГУ, 1993.
Фракталы в физике. Труды 6-го международного симпозиума по фракталам в физике, 1985. — М.: «Мир», 1988.
Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. — Ижевск: «РХД», 2001.
Морозов А. Д. Введение в теорию фракталов. — Москва-Ижевск: Институт компьютерных исследований, 2002, 109—111.
Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории. Москва: Постмаркет, 2000. 248—251.