Гармоническая волнаГармоническая волна — волна, при которой каждая точка колеблющейся среды или поле в каждой точке пространства совершает гармонические колебания. В разных случаях при необходимости особо выделяется интересующий класс гармонических волн, например, плоская гармоническая волна, стоячая гармоническая волна и т. д. (см. ниже).[1] Источниками гармонических волн могут быть гармонические колебания, они также могут возбуждаться в какой-либо системе при взаимодействии её с гармонической волной. Одномерный случайСлучай одномерного однородного пространства (или одномерной однородной среды)[2] — наиболее прост. В этом случае все виды гармонических волн сводятся к:
а также к конечным линейным комбинациям волн такого вида (для выражения произвольной действительной гармонической волн в этом случае достаточно смешать две волны первого вида или четыре второго; в случае более многомерного u добавляется по два таких слагаемых на каждую поляризацию).
Здесь A — постоянный (не зависящий от x и t) коэффициент, природа и размерность которого совпадает с природой и размерностью поля u; k, ω и φ0 — также постоянные параметры, в рассматриваемом одномерном случае все они — действительные числа (в отличие от более многомерных, где k становится векторным — для плоских волн). A — есть амплитуда волны, k — волновое число, ω — (циклическая) частота и φ0 — начальная фаза — то есть фаза волны при x = t = 0. Во второй формуле A — (обычно) комплексное, амплитуду волны определяет его модуль |A|, а начальная фаза спрятана также в A в качестве его аргумента, поскольку Так же, как стоячая волна выражается (как записано здесь) через две бегущих, так же и бегущая может быть выражена через две стоячих. Поэтому можно выбрать один из двух равноправных способов выражения произвольной гармонической волны в случае одномерного однородного пространства: через линейную комбинацию бегущих или линейную комбинацию стоячих волн. Это верно и для всех других случаев, хотя базисные волны, через линейную комбинацию которых выражается произвольная гармоническая волна, могут оказаться сложнее.
Случаи пространства размерностью больше единицыВ случаях пространства размерностью больше единицы, даже если оно однородно, в принципе разнообразие возможных гармонических волн очень сильно возрастает. Однако есть два типа гармонических волн, которым следует уделить главное отдельное внимание. Плоские гармонические волныНаиболее важным и часто встречающимся типом гармонических волн являются плоские гармонические волны (одномерные гармонические волны являются их одномерным частным случаем).
или где, в отличие от одномерной волны — уже не действительное число, а вектор, называемый волновым вектором, размерность которого равна размерности пространства, а выражение означает скалярное произведения этого вектора с вектором[3] , характеризующим точку пространства: . Легко видеть, что если выбрать ось координат вдоль волнового вектора, плоская многомерная волна сводится к одномерной (u вообще перестает зависеть от остальных координат, а от первой — зависит как одномерная гармоническая волна).
Так же, как и в одномерном случае, стоячие и бегущие гармонические волны одной частоты с одинаковым (быть может, с точностью до знака) волновым вектором, элементарно линейно выражаются друг через друга. Поскольку с помощью преобразования Фурье (в текущем параграфе подразумевается, конечно, многомерное преобразование Фурье) практически любую[4] функцию пространственных координат можно представить как сумму (интеграл) функций, представляющих каждая плоскую волну, а зависимость от времени в тогда для случая однородного пространства будет тоже очевидно гармонической, то очевидно удобство разложения любой гармонической (да и не только гармонической) волны по плоским гармоническим волнам. В каких-то случаях и в какой-то мере это может быть полезным и в случаях неоднородности пространства, хотя в этом случае это вполне может и не дать ожидаемых преимуществ, или извлечение этих преимуществ может потребовать особого искусства. Сферические гармонические волныСферические гармонические волны несколько менее универсальны и просты (их гораздо труднее даже выписать в явном виде, если не выражать просто через бесконечные суммы/интегралы плоских волн; например, для двумерного пространства гармонические сферические волны выражаются через функции Бесселя, то есть не выражаются через элементарные функции). Тем не менее они бывают очень полезны, когда сами условия задачи склоняют к попытке рассмотрения сферических волн, то есть, в особенности при исследовании волн, порождаемых точечным источником или когда задача в целом имеет сферическую симметрию (последнее лучше всего для попытки искать решение просто в виде только сферических волн). Для трехмерного однородного пространства гармонические сферические волны имеют вид:
или
или (в виде, удобном в качестве для разложения): Значение и теоретическое применениеОбщий линейный случайЛюбое линейное дифференциальное уравнение вида
где порядок дифференцирования по времени n может быть любым (чаще интересны n = 1 или 2), а L любой линейный дифференциальный оператор, не зависящий от t (правда, если u должно быть действительным одномерным, а L -эрмитов, то нечетные n придется исключить), будет иметь решением гармоническую волну. Действительно, подставим , где x — точка пространства любой размерности. Получаем тогда:
а экспонента сокращается. Сделав такую же подстановку с -ω, получим, при оговоренных выше условиях подходящего K, получить и действительное v как сумму этих двух решений.
Примечания
См. также
|
Portal di Ensiklopedia Dunia