Случай : согласно выдвинутой Морделлом гипотезе, может иметь лишь конечное число рациональных точек.
Доказательство
В 1962 году Шафаревич высказал гипотезу о конечности, с точностью до изоморфизма, множества алгебраических кривых, имеющих заданный род , поле определения и множество точек плохой редукции . В 1968 году Паршин показал, как гипотезу Морделла можно свести к указанной гипотезе конечности Шафаревича.
Другое доказательство, основанное на диофантовых аппроксимациях, было дано Паулем Войта[англ.]. Позднее оно было упрощено Фальтингсом и Энрико Бомбьери.
Следствия
Фальтингс в своей работе 1983 года доказал несколько утверждений, ранее считавшихся гипотезами:
Гипотезу Морделла о том, что кривая рода больше чем 1 над числовым полем имеет лишь конечное число рациональных точек.
Гипотезу Шафаревича о существовании лишь конечного, с точностью до изоморфизма, множества абелевых многообразий заданных размерности и степени поляризации над фиксированным числовым полем, имеющих хорошую редукцию всюду вне заданного конечного множества точек этого поля.
Теорему об изогении абелевых многообразий, имеющих изоморфные модули Тейта.
Простейшее приложение теоремы Фальтингса — это слабая форма Великой теоремы Ферма: для любого выбранного существует лишь конечное число взаимно простых решений уравнения , поскольку для таких nкривая Ферма имеет род, больший 1.
Обобщения
В силу теоремы Морделла — Вейля, теорема Фальтингса может быть переформулирована как утверждение о пересечении кривой с конечнопорождённой подгруппой абелева многообразия .
Заменяя на произвольное подмногообразие и на произвольную подгруппу конечного ранга , мы получаем обобщение, ведущее к гипотезе Морделла — Ленга, которая была доказана.
Гипотеза Морделла для полей функций была доказана Маниным в 1963 году и Грауэртом в 1965 году. Коулман[англ.] в 1990 году нашёл и исправил пробел в доказательстве Манина.
Литература
Mordell, L. J. On the rational solutions of the indeterminate equations of the third and fourth degrees. Cambr. Phil. Soc. Proc. 21, 179—192 (1922).
Faltings, G. Die Vermutungen von Tate und Mordell. Jahresber. Deutsch. Math.-Verein. 86 (1984), no. 1, 1—13.
Cornell, Gary; Silverman, Joseph H. Arithmetic geometry. — New York: Springer, 1986. — ISBN 0-387-96311-1. > Contains an English translation of Faltings (1983)
Parsin, A. N.Quelques conjectures de finitude en geometrie diophantienne // Actes du Congres International des Mathematiciens (Nice, 1970), Tome 1. — Gauthier-Villars, 1971. — С. 467—471.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.