Граф дружеских отношений (или граф датской мельницы, или n-лопастной вентилятор) Fn — это планарныйнеориентированный граф с 2n+1 вершинами и 3n рёбрами[1].
Граф дружеских отношений Fn можно построить путём соединения n копий циклаC3 в одной общей вершине[2].
По построению граф дружеских отношений Fn изоморфен мельнице Wd(3,n). Граф является графом единичных расстояний, имеет обхват 3, диаметр 2 и радиус 1. Граф F2 изоморфен бабочке.
Теорема о графе дружеских отношений Эрдёша, Реньи и Веры Сос[3][4] утверждает, что конечные графы со свойством, что любые две вершины имеют в точности одного общего соседа, это в точности графы дружеских отношений. Неформально, если группа людей обладает свойством, что любая пара людей имеет в точности одного общего друга, то должно быть одно лицо, являющееся другом остальных членов группы. Для бесконечных графов, однако, может существовать много различных графов одной и той же мощности, имеющих это свойство[5].
Комбинаторное доказательство теоремы о графе дружеских отношений дали Мертциос и Унгер[6]. Другое доказательство дал Крейг Хунеке[7].
Согласно экстремальной теории графов любой граф с достаточно большим числом рёбер (по отношению к числу вершин) должен содержать k-лопастной вентилятор в качестве подграфа. Более точно, это верно для графа с n вершинами, если число рёбер равно
где f(k) равно k2 − k, если k нечётно, и
f(k) равно k2 − 3k/2, если k чётно. Эти границы обобщают теорему Турана о числе рёбер в графе без треугольников и они являются лучшими границами для данной задачи, поскольку для любого меньшего числа рёбер существуют графы, не содержащие k-лопастного вентилятора[10].
J.C. Bermond, A. E. Brouwer, A. Germa.Systèmes de triplets et différences associées // Problèmes Combinatoires et Théorie des Graphes. — Paris, 1978. — Т. 260, Editions du Centre Nationale de la Recherche Scientifique. — (Colloq. Intern. du CNRS).
J. C. Bermond, A. Kotzig, J. Turgeon.On a combinatorial problem of antennas in radioastronomy, in Combinatorics // Colloq. Math. Soc. János Bolyai, / A. Hajnal, V. T. Sos, eds.. — North-Holland, Amsterdam, 1978. — Т. 18, 2 vols..
Václav Chvátal, Anton Kotzig, Ivo G. Rosenberg, Roy O. Davies. There are friendship graphs of cardinal // Canadian Mathematical Bulletin. — 1976. — Т. 19, вып. 4. — С. 431–433. — doi:10.4153/cmb-1976-064-1.
George Mertzios, Walter Unger.The friendship problem on graphs // Relations, Orders and Graphs: Interaction with Computer Science. — 2008.
Craig Huneke. The Friendship Theorem // The American Mathematical Monthly. — 2002. — Январь (т. 109, вып. 2). — С. 192–194. — doi:10.2307/2695332. — JSTOR2695332.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.