Хроматический многочлен![]() Независимое 3-множество: . Ребро и одна вершина: . 3-путь: . 3-клика: . Хроматический многочлен — многочлен, изучаемый в алгебраической теории графов, представляющий число раскрасок графа как функцию от числа цветов. Первоначально определён Джорджем Биркгофов для попытки решения на проблемы четырёх красок. Обобщен и систематически изучен Хасслером Уитни, Татт обобщил хроматический многочлен до многочлена Татта, связав его с моделью Поттса[англ.] статистической физики. ИсторияДжордж Биркгоф ввёл хроматический многочлен в 1912 году, определяя его только для планарных графов в попытке доказать теорему о четырёх красках. Если обозначает число правильных раскрасок графа G k цветами, то можно было бы доказать теорему о четырёх красках, показав, что для всех планарных графов G. Таким образом он надеялся использовать мощь математического анализа и алгебры для изучения корней многочленов для изучения комбинаторной задачи раскраски. Хасслер Уитни обобщил многочлен Биркгофа с планарного случая на графы общего вида в 1932. В 1968 году Рид поднял вопрос: какие многочлены являются хроматическими многочленами для некоторых графов (задача остаётся открытой), и ввёл понятие хроматически эквивалентных графов. В настоящее время хроматические многочлены являются центральными объектами алгебраической теории графов[1]. Определение![]() Хроматический многочлен графа G считает число правильных раскрасок вершин. Обычно многочлен обозначается как , , или . Последнее обозначение будем использовать в остальной части статьи. Например, путь с 3 вершинами не может быть раскрашен в 0 цветов или 1 цветом. Используя 2 цвета граф можно раскрасить двумя способами. Используя 3 цвета граф можно раскрасить 12 способами.
Для графа G с n вершинами хроматический многочлен определяется как уникальный интерполирующий многочлен степени, не превосходящей n, проходящий через точки Если граф G не содержит вершин с петлями, то хроматический многочлен является приведённым многочленом степени в точности n. Фактически, для приведённого выше примера мы имеем Хроматический многочлен включает по меньшей мере столько информации о раскрашиваемости графа G, сколько содержится в хроматическом числе. Более того, хроматическое число является наименьшим положительным целым, при котором хроматический многочлен не обращается в нуль, Примеры
СвойстваДля фиксированного графа G с n вершинами хроматический многочлен является, фактически, многочленом степени n. По определению, вычисление значения многочлена даёт число k-раскрасок графа G для . То же самое верно для k > n. Выражение даёт число ациклических ориентаций графа G[2]. Значение производной от многочлена в точке 1, равно с точностью до знака хроматическому инварианту . Если граф G имеет n вершин, m рёбер и c компонент , то
Граф G с n вершинами является деревом тогда и только тогда, когда Хроматическая эквивалентность![]() Говорят, что два графа хроматически эквивалентны, если они имеют одинаковые хроматические многочлены. Изоморфные графы имеют одинаковые хроматические многочлены, но неизоморфные графы могут быть хроматически эквивалентными. Например, все деревья с n вершинами имеют одинаковые хроматические многочлены: В частности, является хроматическим многочленом как для клешни, так и для пути с 4 вершинами. Хроматическая единственностьГраф является хроматически уникальным, если он определяется хроматическим многочленом с точностью до изоморфизма. Другими словами, если граф G хроматически уникален, то из следует, что G и H изоморфны. Все циклы хроматически уникальны[4]. Хроматические корниКорень (или нуль) хроматического многочлена (называется «хроматическим корнем») — это значение x, для которого . Хроматические корни хорошо изучены. Фактически, исходным побуждением Биркгофа для введения хроматического многочлена было показать, что для планарных графов для x ≥ 4. Это доказало бы теорему о четырёх красках. Никакой граф нельзя раскрасить в 0 цветов, так что 0 всегда является хроматическим корнем. Только графы без рёбер могут быть раскрашены в один цвет, так что 1 является хроматическим корнем любого графа, имеющего по меньшей мере одно ребро. С другой стороны, за исключением этих двух случаев, никакой граф не может иметь в качестве хроматического корня вещественное число, меньшее либо равное 32/27[5]. Результат Татта связывает золотое сечение с изучением хроматических корней, показывая, что хроматические корни существуют очень близко к — если является планарной триангуляцией сферы, то В то время как вещественная прямая, таким образом, имеет большие куски, которые не содержат хроматических корней ни для какого графа, любая точка на комплексной плоскости произвольно близка к хроматическому корню в том смысле, что существует бесконечное семейство графов, хроматические корни которых плотны на комплексной плоскости[6]. КатегоризацияХроматический многочлен категоризирован с помощью теории гомологий, близко связанной с гомологией Хованова[англ.][7]. Алгоритмы
Вычислительные задачи, связанные с хроматическими многочленами
Первая задача более общая, поскольку, зная коэффициенты , мы можем вычислить значение многочлена в любой точке за полиномиальное время. Вычислительная сложность второй задачи сильно зависит от величины k. Когда k является натуральным числом, задачу можно рассматривать как вычисление количества k-раскрасок данного графа. Например, задача включает подсчёт 3-раскрасок в качестве канонической задачи для изучения сложности подсчёта. Эта задача является полной в классе #P. Эффективные алгоритмыДля некоторых базовых классов графов известны явные формулы хроматических многочленов. Например, это верно для деревьев и клик, что показано в таблице выше. Известны алгоритмы полиномиального времени для вычисления хроматического многочлена для широкого класса графов, в который входят хордальные графы[8] и графы с ограниченной кликовой шириной[9][10]. Второй из этих классов, в свою очередь, включает кографы и графы с ограниченной древесной шириной, такие как внешнепланарные графы. В интернете присутствуют лица, пытающиеся решить задачу коллективно, и им помогают активные автономные помощники, особенно для хроматических многочленов высокой степени[11]. Удаление — стягиваниеРекурсивный способ вычисления хроматического многочлена базируется на стягивании ребра — для пары вершин и граф получается путём слияния двух вершин и удаления ребра между ними. Хроматический многочлен удовлетворяет рекурсивному соотношению
где и являются смежными вершинами и является графом с удалённым ребром . Эквивалентно, если и не смежны и является графом с добавленным ребром . В первой форме рекурсия прекращается на наборе пустых графов. Эти рекуррентные отношения называются также фундаментальной теоремой редукции[12]. Вопрос Татта о том, какие другие свойства графа удовлетворяют тем же рекуррентным соотношениям, привёл к открытию обобщения хроматического многочлена на две переменные — многочлену Татта. Выражения дают рекурсивную процедуру, называемую алгоритмом удаления — стягивания, которая является базисом многих алгоритмов раскраски графов. Функция ChromaticPolynomial в системе компьютерной алгебры Mathematica использует вторую рекуррентную формулу если граф плотный, и первую, если граф разреженный[13]. Худшее время работы для обоих формул удовлетворяет рекуррентному соотношению для чисел Фибоначчи, так что в худшем случае алгоритм работает за время (с точностью до некоторого полиномиального коэффициента) на графе с n вершинами и m рёбрами[14]. Анализ времени работы можно улучшить до полиномиального множителя числа остовных деревьев входного графа[15]. На практике используется стратегия ветвей и границ вместе с отбрасыванием изоморфных графов, чтобы исключить рекурсивные вызовы, и время зависит от эвристики, используемой при выборе пары вершин (для исключения-стягивания). Метод кубаСуществует естественный геометрический подход к раскраске графов, если заметить, что при назначении натуральных чисел каждой вершине раскраска графов является вектором целочисленной решётки. Поскольку присвоение двум вершинам и одного цвета эквивалентно равенству координат и в векторе раскраски, каждое ребро можно ассоциировать с гиперплоскостью вида . Набор таких гиперплоскостей для данного графа называется его графической конфигурацией гиперплоскостей[англ.]. Правильная раскраска графа — это раскраска, вектор которой не оказывается на запрещённой плоскости. Ограниченные множеством цветов , точки решётки попадают в куб . В этом контексте хроматический многочлен подсчитывает точки решётки в -кубе, которые не попадают на графическую конфигурацию. Вычислительная сложностьЗадача вычисления числа 3-раскрасок данного графа является каноническим примером #P-полной задачи, так что задача вычисления коэффициентов хроматического многочлена #P-трудна. Аналогично, вычисление для данного графа G #P-полна. С другой стороны, для легко вычислить , так что соответствующие задачи имеют полиномиальную по времени трудность. Для целых чисел задача #P-трудна, что устанавливается подобно случаю . Фактически, известно, что #P-трудна для всех x (включая отрицательные целые числа и даже все комплексные числа), за исключением трёх «простых точек»[16]. Таким образом, сложность вычисления хроматического многочлена полностью понятна. В многочлене коэффициент всегда равен 1, а также известны некоторые другие свойства коэффициентов. Это поднимает вопрос, нельзя ли вычислить некоторые коэффициенты попроще. Однако задача вычисления ar для фиксированного r и данного графа G является #P-трудной[17]. Не известно никакого аппроксимационного алгоритма вычисления для любого x, за исключением трёх простых точек. В целых точках соответствующая задача разрешимости определения, может ли данный граф быть раскрашен в k цветов, NP-трудна. Такие задачи не могут быть аппроскимированы с любым коэффициентом с помощью полиномиального вероятностного алгоритма с ограниченной ошибкой, разве только NP = RP, поскольку любая мультипликативная аппроксимация различала бы значения 0 и 1, что было бы эффективным решением задачи с помощью полиномиального вероятностного алгоритма с ограниченной ошибкой в форме задачи разрешимости. В частности, при некоторых предположениях, это исключает возможность полностью полиномиальной рандомизированной аппроксимационной схемы (FPRAS). Для других точек нужны более сложные рассуждения и вопрос находится в фокусе активных поисков. На 2008 известно, что не существует FPRAS-схемы для вычиcления для любого x > 2, разве только NP = RP[18]. Примечания
Литература
Ссылки
|
Portal di Ensiklopedia Dunia