В математике для приближённого вычисления производных заданной таблично функции можно искать выражение значений производных через известные значения функции с помощью подходящего набора коэффициентов. Для этого можно использовать различные интерполяционные формулы или метод неопределённых коэффициентов.
Равноотстоящие узлы
Пусть
— точка, в которой необходимо вычислить производные достаточно гладкой функции
,
— сетка равноотстоящих узлов с шагом
и известны значения функции
в этих узлах. В этом случае можно выразить формулы численного дифференцирования непосредственно через значения функции
с помощью интерполяционной формулы Лагранжа. Такие формулы называются также безразностными, так как не требуют вычисления конечных или разделённых разностей[1].
В зависимости от расположения точки
в сетке узлов (слева, справа или посередине) различают соответственно коэффициенты, вычисленные «вперёд», «назад» и симметричные коэффициенты.
Симметричные коэффициенты
Для получения симметричных коэффициентов число узлов в сетке должно быть нечётным. Тогда порядок погрешности приближения будет чётным числом.
Порядок производной
|
Порядок погрешности
|
−5 |
−4 |
−3 |
−2 |
−1 |
0 |
1 |
2 |
3 |
4 |
5
|
1
|
2
|
|
|
|
|
−1/2 |
0 |
1/2 |
|
|
|
|
4
|
|
|
|
1/12 |
−2/3 |
0 |
2/3 |
−1/12 |
|
|
|
6
|
|
|
−1/60 |
3/20 |
−3/4 |
0 |
3/4 |
−3/20 |
1/60 |
|
|
8
|
|
1/280 |
−4/105 |
1/5 |
−4/5 |
0 |
4/5 |
−1/5 |
4/105 |
−1/280
|
|
2
|
2
|
|
|
|
|
1 |
−2 |
1 |
|
|
|
|
4
|
|
|
|
−1/12 |
4/3 |
−5/2 |
4/3 |
−1/12 |
|
|
|
6
|
|
|
1/90 |
−3/20 |
3/2 |
−49/18 |
3/2 |
−3/20 |
1/90 |
|
|
8
|
|
−1/560 |
8/315 |
−1/5 |
8/5 |
−205/72 |
8/5 |
−1/5 |
8/315 |
−1/560
|
|
3
|
2
|
|
|
|
−1/2 |
1 |
0 |
−1 |
1/2 |
|
|
|
4
|
|
|
1/8 |
−1 |
13/8 |
0 |
−13/8 |
1 |
−1/8 |
|
|
6
|
|
−7/240 |
3/10 |
−169/120 |
61/30 |
0 |
−61/30 |
169/120 |
−3/10 |
7/240
|
|
4
|
2
|
|
|
|
1 |
−4 |
6 |
−4 |
1 |
|
|
|
4
|
|
|
−1/6 |
2 |
−13/2 |
28/3 |
−13/2 |
2 |
−1/6 |
|
|
6
|
|
7/240 |
−2/5 |
169/60 |
−122/15 |
91/8 |
−122/15 |
169/60 |
−2/5 |
7/240
|
|
5
|
2
|
|
|
−1/2 |
2 |
−5/2 |
0 |
5/2 |
−2 |
1/2 |
|
|
4
|
|
1/6 |
−3/2 |
13/3 |
−29/6 |
0 |
29/6 |
−13/3 |
3/2 |
−1/6
|
|
6
|
−13/288 |
19/36 |
−87/32 |
13/2 |
−323/48 |
0 |
323/48 |
−13/2 |
87/32 |
−19/36 |
13/288
|
6
|
2
|
|
|
1 |
−6 |
15 |
−20 |
15 |
−6 |
1 |
|
|
4
|
|
−1/4 |
3 |
−13 |
29 |
−75/2 |
29 |
−13 |
3 |
−1/4
|
|
6
|
13/240 |
−19/24 |
87/16 |
−39/2 |
323/8 |
−1023/20 |
323/8 |
−39/2 |
87/16 |
−19/24 |
13/240
|
Например, третья производная с погрешностью второго порядка вычисляется как

Коэффициенты вперёд
Порядок производной
|
Порядок погрешности
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
1
|
1 |
−1 |
1 |
|
|
|
|
|
|
|
2 |
−3/2 |
2 |
−1/2 |
|
|
|
|
|
|
3 |
−11/6 |
3 |
−3/2 |
1/3 |
|
|
|
|
|
4 |
−25/12 |
4 |
−3 |
4/3 |
−1/4 |
|
|
|
|
5 |
−137/60 |
5 |
−5 |
10/3 |
−5/4 |
1/5 |
|
|
|
6 |
−49/20 |
6 |
−15/2 |
20/3 |
−15/4 |
6/5 |
−1/6 |
|
|
2
|
1 |
1 |
−2 |
1 |
|
|
|
|
|
|
2 |
2 |
−5 |
4 |
−1 |
|
|
|
|
|
3 |
35/12 |
−26/3 |
19/2 |
−14/3 |
11/12 |
|
|
|
|
4 |
15/4 |
−77/6 |
107/6 |
−13 |
61/12 |
−5/6 |
|
|
|
5 |
203/45 |
−87/5 |
117/4 |
−254/9 |
33/2 |
−27/5 |
137/180 |
|
|
6 |
469/90 |
−223/10 |
879/20 |
−949/18 |
41 |
−201/10 |
1019/180 |
−7/10 |
|
3
|
1 |
−1 |
3 |
−3 |
1 |
|
|
|
|
|
2 |
−5/2 |
9 |
−12 |
7 |
−3/2 |
|
|
|
|
3 |
−17/4 |
71/4 |
−59/2 |
49/2 |
−41/4 |
7/4 |
|
|
|
4 |
−49/8 |
29 |
−461/8 |
62 |
−307/8 |
13 |
−15/8 |
|
|
5 |
−967/120 |
638/15 |
−3929/40 |
389/3 |
−2545/24 |
268/5 |
−1849/120 |
29/15 |
|
6 |
−801/80 |
349/6 |
−18353/120 |
2391/10 |
−1457/6 |
4891/30 |
−561/8 |
527/30 |
−469/240
|
4
|
1 |
1 |
−4 |
6 |
−4 |
1 |
|
|
|
|
2 |
3 |
−14 |
26 |
−24 |
11 |
−2 |
|
|
|
3 |
35/6 |
−31 |
137/2 |
−242/3 |
107/2 |
−19 |
17/6 |
|
|
4 |
28/3 |
−111/2 |
142 |
−1219/6 |
176 |
−185/2 |
82/3 |
−7/2 |
|
5 |
1069/80 |
−1316/15 |
15289/60 |
−2144/5 |
10993/24 |
−4772/15 |
2803/20 |
−536/15 |
967/240
|
Например, первая производная с погрешностью третьего порядка и вторая производная с погрешностью второго порядка вычисляются как


Нетрудно видеть, что коэффициенты для погрешности первого порядка представляют собой биномиальные коэффициенты с меняющимися знаками, что соответствует общей формуле для восходящих конечных разностей.
Коэффициенты назад
Для получения коэффициентов назад необходимо обратить знаки у коэффициентов вперёд для производных нечётных порядков и зеркально отразить таблицу коэффициентов справа налево:
Порядок производной
|
Порядок погрешности
|
−5
|
−4
|
−3
|
−2
|
−1
|
0
|
1
|
1 |
|
|
|
|
−1 |
1
|
2 |
|
|
|
1/2 |
−2 |
3/2
|
3 |
|
|
−1/3 |
3/2 |
−3 |
11/6
|
2
|
1 |
|
|
|
1 |
−2 |
1
|
2 |
|
|
−1 |
4 |
−5 |
2
|
3
|
1 |
|
|
−1 |
3 |
−3 |
1
|
2 |
|
3/2 |
−7 |
12 |
−9 |
5/2
|
4
|
1 |
|
1 |
−4 |
6 |
−4 |
1
|
2 |
−2 |
11 |
−24 |
26 |
−14 |
3
|
Например, первая производная с погрешностью третьего порядка и вторая производная с погрешностью второго порядка вычисляются как


Произвольная сетка узлов
Для получения коэффициентов для произвольно расположенных узлов
удобно использовать метод неопределённых коэффициентов[2]. Для этого значение искомой производной порядка
в точке
записывается в виде

где
— неизвестные коэффициенты,
— остаточный член интерполяции.
Коэффициенты
подбираются из условия
, которое должно выполняться для функций
,
,
,...,
. Получается следующая система линейных уравнений:

В этом случае погрешность вычислений будет иметь порядок
.
Матрица системы является матрицей Вандермонда, которая также возникает при решении общей задачи интерполяции многочленами.
Примечания
Литература
Ссылки
См. также