Парадокс дней рожденияПарадо́кс дней рожде́ния — утверждение, состоящее в том, что в группе, состоящей из 23 или более человек, вероятность совпадения дней рождения (число и месяц) хотя бы у двух людей превышает 50 %. Например, если в классе 23 ученика или более, то более вероятно то, что у какой-то пары одноклассников дни рождения придутся на один день, чем то, что у каждого будет свой неповторимый день рождения[1]. Впервые эта задача была рассмотрена Рихардом Мизесом в 1939 году[2][3]. Для 57 и более человек вероятность такого совпадения превышает 99 %, хотя 100 % она достигает, согласно принципу Дирихле, только тогда, когда в группе не менее 367 человек (ровно на единицу больше, чем число дней в високосном году; с учётом високосных лет). Такое утверждение может показаться неочевидным, так как вероятность совпадения дней рождения двух человек с любым днём в году , умноженная на число человек в группе (23), даёт лишь . Это рассуждение неверно, так как число возможных пар значительно превышает число человек в группе (253 > 23). Таким образом, утверждение не является парадоксом в строгом научном смысле: логического противоречия в нём нет, а парадокс заключается лишь в различиях между интуитивным восприятием ситуации человеком и результатами математического расчёта. ![]() Интуитивное восприятиеВ группе из 23 человек вероятность совпадения дней рождения у двух человек столь высока, потому что рассматривается вероятность совпадения дней рождения у любых двух человек в группе. Эта вероятность определяется количеством пар людей, которые можно составить из 23 человек. Так как порядок людей в парах не имеет значения, общее число таких пар равно числу сочетаний из 23 по 2, то есть (23 × 22) / 2 = 253 пары. В формулировке парадокса речь идёт именно о совпадении дней рождения у каких-либо двух членов группы. Одно из распространённых заблуждений состоит в том, что этот случай путают с другим случаем, на первый взгляд похожим, когда из группы выбирается один человек и оценивается вероятность того, что день рождения каких-либо других членов группы совпадёт с днём рождения выбранного человека. В последнем случае вероятность совпадения значительно ниже. Расчёт вероятностиТребуется определить вероятность того, что в группе из n человек как минимум у двух из них дни рождения совпадут. Пусть дни рождения распределены равномерно, то есть примем, что:
В действительности это не совсем так — в частности, в некоторых странах из-за особенностей работы больниц больше детей рождается в определённые дни недели. Однако неравномерность распределения может лишь увеличить вероятность совпадения дней рождения, но не уменьшить: если бы все люди рождались только в 3 дня из 365, то вероятность совпадения дней рождения была бы очень высокой. Рассчитаем сначала — вероятность того, что в группе из человек дни рождения всех людей будут различными. Если , то в силу принципа Дирихле вероятность равна нулю. Если же , то будем рассуждать следующим образом. Возьмём наугад одного человека из группы и запомним его день рождения. Затем возьмём наугад второго человека, при этом вероятность того, что у него день рождения не совпадёт с днем рождения первого человека, равна . Затем возьмём третьего человека; при этом вероятность того, что его день рождения не совпадёт с днём рождения одного из первых двух, равна . Рассуждая по аналогии, мы дойдём до последнего человека, для которого вероятность несовпадения его дня рождения со всеми предыдущими будет равна . Перемножая все эти вероятности, получаем вероятность того, что все дни рождения в группе будут различными:
Тогда вероятность того, что хотя бы у двух человек из n дни рождения совпадут, равна
Значение этой функции превосходит 1/2 при , при этом вероятность совпадения равна примерно 50,73 %, а . Список значений n и соответствующих им вероятностей приведён в следующей таблице.
Данную задачу можно переформулировать в терминах классической «задачи о совпадениях». Пусть:
Требуется посчитать вероятность события, заключающегося в отсутствии повторений в выборке. Все расчёты аналогичны приведённым выше. Альтернативный методВероятность совпадения дней рождения у двух человек, входящих в группу из n людей, можно также рассчитать с использованием формул комбинаторики[4]. Представим, что каждый день года — это одна буква в алфавите, и алфавит состоит из 365 букв. Дни рождения n человек могут быть представлены строкой, состоящей из n букв такого алфавита. По формуле Хартли, количество возможных строк равно Количество возможных строк, в которых буквы не повторяются (размещение из 365 по n), составит Если строки выбираются случайно (с равномерным распределением), вероятность выбора строки, в которой хотя бы две буквы совпадут, равна
Таким образом, а это выражение эквивалентно представленному выше. Также общее количество возможных строк можно рассчитать по формуле комбинаторики количества размещений с повторениями А(повт) n/365 = 365n. АппроксимацииЭкспоненциальная функцияИспользуя разложение экспоненциальной функции в ряд Тейлора приведённое выше выражение для можно аппроксимировать следующим образом:
Следовательно: ![]() Заметим, что упрощённая аппроксимация как видно по графику, также даёт достаточную точность. Приведём ещё одну аппроксимацию. Вероятность того, что у двух людей дни рождения не совпадают, равна 364/365. В группе из человек пар. Поэтому вероятность при условии независимости этих событий может быть приближена числом Отсюда получаем приближение для искомой вероятности p(n): Пуассоновское приближениеИспользуя приближение Пуассона для бинома, исходя из предыдущего приближения для , получим чуть больше 50 %: Расчёт количества человек, при котором вероятность составляет 50 %Из приведённой ранее формулы выразим n. Затем вместо p(n) подставим 50 % (0,5). В результате получим: Существует ещё один способ оценки n при вероятности 50 %. Согласно доказанному выше: Найдём наименьшее n, при котором или, что то же самое, Воспользуемся приведённой выше аппроксимацией функции экспоненциальной функцией: Подставив вместо в выражение , получим Решая относительно n, получим Отсюда найдём n и округлим до целого:
Родившиеся в один день с заданным человекомСравним вероятность p(n) с вероятностью того, что в группе из n человек день рождения какого-либо человека из группы совпадёт с днём рождения некоторого заранее выбранного человека, не принадлежащего группе. Эта вероятность равна ![]() Ось абсцисс: количество человек n. Ось ординат: вероятность. p(n) — вероятность того, что в группе из n человек как минимум у двух из них дни рождения совпадут. q(n) — вероятностью того, что в группе из n человек день рождения какого‑либо человека из группы совпадёт с днём рождения некоторого заранее выбранного человека, не принадлежащего группе. Подставляя n = 23, получаем q(n) ≈ 6,12 %. Для того, чтобы вероятность q(n) превысила 50 %, число людей в группе должно быть не менее 253 (q(252) ≈ 49,91 %; q(253) ≈ 50,05 %). Это число больше, чем половина дней в году (365/2 = 182,5); так происходит из-за того, что у остальных членов группы дни рождения могут совпадать между собой, и это уменьшает вероятность q(n). Если выразиться точнее, то это происходит из-за того, что при сложении вероятностей совпадений мы каждый раз вычитаем вероятность совместного появления этих событий, так как события являются совместными и вероятность их совместного появления при сложении учтена дважды. P(A + B) = P(A) + P(B) − P(AB) и т. д с каждым добавлением нового слагаемого. ОбобщенияСовпадение дискретных случайных величинОписанная задача может быть сформулирована в общем виде:
Если рассуждать таким же образом, как описано выше, можно получить общие решения: Обратная задача:
Решение: Несколько типов людей![]() Выше парадокс дней рождения был представлен для одного «типа» людей. Можно обобщить задачу, введя несколько «типов», например, разделив людей на мужчин (m) и женщин (n). Подсчитаем вероятность того, что хотя бы у одной женщины и у одного мужчины совпадают дни рождения (совпадение дней рождения у двух женщин или у двух мужчин не учитываются): где d = 365 и S2() — числа Стирлинга второго рода. Интересно, что нет однозначного ответа на вопрос о величине n+m для заданной вероятности. Например, вероятность 0,5 даёт как набор из 16 мужчин и 16 женщин, так и набор из 43 мужчин и 6 женщин. Близкие дни рожденияДругое обобщение парадокса дней рождения состоит в постановке задачи о том, сколько требуется человек для того, чтобы вероятность наличия в группе людей, дни рождения которых различаются не более чем на один день (или на два, три дня и так далее), превысила 50 %. При решении этой задачи используется принцип включения-исключения. Результат (опять-таки в предположении, что дни рождения распределены равномерно) получается следующим:
Таким образом, вероятность того, что даже в группе из 7 человек дни рождения хотя бы у двух из них будут различаться не более чем на неделю, превышает 50 %. ПрименениеПарадокс дней рождения в общем виде применим к хеш-функциям: если хеш-функция генерирует N‑битное значение, то число случайных входных данных, для которых хеш-коды с большой вероятностью дадут коллизию (то есть найдутся равные хеш-коды, полученные на разных входных данных), равно не 2N, а только около 2N/2. Это наблюдение используется в атаке на криптографические хеш‑функции, получившей название «атака „дней рождения“».
В белых ячейках указано количество человек в группе, при котором коллизия произойдёт с заданной вероятностью (по аналогии с парадоксом количество выходных цепочек равно 365). Сходный математический аппарат используется для оценки размера популяции рыб, обитающих в озёрах. Метод называется «capture-recapture» («поймать — поймать снова»). Действительно, если каждую пойманную рыбу помечать и отпускать, то вероятность поймать помеченную рыбу будет расти нелинейно (в соответствии с приведённым выше графиком) с ростом количества попыток. Размер популяции грубо может быть оценён как квадрат числа попыток, совершаемых до вылавливания первой помеченной рыбы. Решение задачи в общем виде находит применение во многих разделах математики, например, в недетерминированных алгоритмах факторизации. Так, одно из самых простых объяснений ρ-метода Полларда аналогично объяснению парадокса дней рождения: достаточно иметь примерно случайных чисел от 0 до , где — простые, чтобы хотя бы для одной из пар чисел с высокой вероятностью нашёлся , который и будет делителем числа n. Обратные задачи
Пользуясь формулой, приведённой выше, получаем:
Наилучшая позицияПусть в комнате находятся n - 1 человек, и их дни рождения различны. Пусть g(n) — вероятность того, что день рождения вошедшего человека совпадает с днём рождения кого‑либо из присутствующих в комнате. Требуется найти значение n, при котором значение функции g(n) максимально. Решение сводится к нахождению максимального значения выражения
Используя приведённую выше формулу для p(n), получим n = 20. Среднее число людейРассмотрим другую задачу. Сколько в среднем нужно людей для того, чтобы хотя бы у двух из них совпали дни рождения? Эта проблема имела отношение к алгоритмам хеширования и была исследована Дональдом Кнутом. Оказывается, что интересующая нас случайная величина имеет математическое ожидание, равное где Функция была исследована Рамануджаном. Он же получил для этой функции следующее асимптотическое разложение: При M = 365 среднее число людей равно Это число немного больше, чем число людей, обеспечивающих вероятность 50 %. Как ни удивительно, необходимое число людей равно M + 1 = 366 (у 365 людей дни рождения могут распределиться по каждому из 365 дней года без совпадений), хотя в среднем нужно лишь 25. См. такжеПримечания
Литература
Ссылки
|
Portal di Ensiklopedia Dunia