Полное усечение (геометрия)![]() ![]() ![]() В евклидовой геометрии спрямление или полное усечение — это процесс усечения многогранника путём пометки середины всех его рёбер и отсечения всех вершин вплоть до этих точек [1]. Получающийся многогранник будет ограничен фасетами (гранями размерности n-1, в трёхмерном пространстве это многоугольники) вершинных фигур и усечёнными фасетами исходного многогранника. Операции спрямления даётся однобуквенный символ r. Так, например, r{4,3} — спрямлённый куб, т.е. кубооктаэдр. Конвей для этой операции использует обозначение ambo. В теории графов эта операция создаёт срединный граф. Пример спрямления как финальной стадии усечения ребраПолное усечение является финальной стадией процесса усечения. На рисунке показаны четыре стадии непрерывного процесса усечения от правильного куба до полностью усечённого состояния: Более высокие степени полного усеченияБолее высокие степени полного усечения могут быть осуществлены на правильных многогранниках более высоких размерностей. Наивысшая степень полного усечения создаёт двойственный многогранник. Спрямление усекает рёбра до точек. Двойное спрямление усекает (двумерные) грани до точек. В более высоких размерностях тройное спрямление усекает ячейки (трёхмерные грани) до точек, и так далее. Пример двойного спрямления как финальной стадии усечения гранейПоследовательность на рисунке показывает двойное усечение куба как конечную стадию процесса от куба к двойственному октаэдру, при котором исходная грань усекается до точки: Для многоугольниковДвойственный многоугольник — это то же самое, что и полностью усечённая его форма. Новые вершины располагаются в серединах сторон исходного многоугольника. Для многогранников и плоских мозаикЛюбой правильный многогранник и его двойственный имеют один и тот же полностью усечённый многогранник. (Это не так для многогранников в пространствах размерности 4 и более.) Полностью усечённый многогранник может быть получен как пересечение исходного правильного многогранника с подходящим образом масштабированной концентрической версии двойственного. По этой причине их имена строятся как комбинации имени исходного многогранника и его двойственного:
Примеры
Для неправильных многогранниковЕсли многогранник не является правильным, середины рёбер, окружающих вершину, могут не лежать в одной плоскости. Однако некая форма полного усечения остаётся возможной и в этом случае — любой многогранник имеет полиэдральный граф, как 1-скелет[англ.] (многогранника), и из этого графа можно образовать срединный граф путём помещения вершин в середины рёбер исходного графа и соединения двух новых вершин ребром, если они принадлежат последовательным рёбрам вдоль общей грани. Получившийся срединный граф остаётся полиэдральным, так что по теореме Штайница его можно представить в виде многогранника. Эквивалент нотации Конвея для полного усечения — это ambo, обозначаемый буквой a. Применяя дважды aa, (спрямление после спрямления) — это конвеевская операция расширения, e, которая является той же операцией, что и операция скашивания Джонсона, t0,2 для правильных многогранников и мозаик. Для 4-мерных многогранников и 3-мерных мозаикЛюбой выпуклый правильный 4-мерный многогранник[англ.] имеет форму полного усечения, как однородный 4-мерный многогранник[англ.]. Правильный 4-мерный многогранник {p,q,r} имеет ячейки {p,q}. Его полное усечение даст два типа ячеек — полностью усечённые {p,q} многогранники, оставшиеся от исходных ячеек, и {q,r} многогранники как новые ячейки, образованные на местах отсечённых вершин. Однако усечение {p,q,r} не совпадает с усечением {r,q,p}. Дальнейшее усечение, называемое двойным полным усечением[англ.], симметрично относительно 4-мерного многогранника и его двойственного. Смотрите Однородный 4-мерный многогранник[англ.]. Примеры
Степени спрямленияПервое полное усечение усекает рёбра до точек. Если многогранник является правильным, эта форма представляется расширенным символом Шлефли t1{p,q,...} или r{p,q,...}. Второе полное усечение, или двойное спрямление, усекает грани до точек. Если многогранник правильный, двойное полное усечение обозначается t2{p,q,...} или 2r{p,q,...}. Для 3-мерных многогранников двойное полное усечение даёт двойственный многогранник. Более высокие степени полного усечения можно построить для многогранников в пространствах размерности 4 и выше. В общем случае, уровень полного усечения n отсекает n-мерные грани до точек. Если многогранник в n-мерном пространстве полностью усечён до степени (n-1), его фасеты (грани размерности n-1) усекаются до точки и он становится двойственным исходному. Обозначения и фасетыСуществует три различных эквивалентных обозначения для каждой степени полного усечения. Таблицы ниже показывают имена по размерности и два типа фасет для каждого. Правильные многоугольникиФасеты — это рёбра, представленные как {2}.
Правильные 3-мерные однородные многогранники и мозаикиФасеты являются правильными многоугольниками.
Правильные однородные 4-мерные многогранники и сотыФасеты — правильные или полностью усечённые многогранники.
Правильные многогранники в 5-мерном пространстве и 4-мерные сотыФасеты являются правильными или полностью усечёнными четырёхмерными многогранниками.
См. также
Примечания
Литература
Ссылки
|
Portal di Ensiklopedia Dunia