Представление фазового пространстваВ представлении фазового пространства квантовая механика трактует единообразно как координаты, так и импульсы частиц, которые образуют фазовое пространство, в отличие от трактовки Шредингера, где используется координатное или импульсное представления (см. координатное и импульсное пространства[англ.]). Два ключевых элемента физической картины в представлении фазового пространства состоят в следующем: квантовое состояние описывается квазивероятностным распределением (вместо волновой функции, векторами состояний или матрицей плотности), и оператор умножения заменяется звёздочным произведением. Теория была полностью разработана Хилбрандом Груневолдом в 1946 году в своей кандидатской диссертации[1] и независимо Джо Моялем[2]. Каждая из этих работ базировались на более ранних идеях, сформулированных Германом Вейлем[3] и Юджином Вигнером[4]. Главное преимущество квантовой механики в представлении фазового пространства заключается в том, что оно делает квантовую механику аналогичной гамильтоновой механике, избегая формализма операторов, тем самым «освобождая» квантование от «бремени» Гильбертова пространства[5]. Эта формулировка носит статистический характер и предлагает логические связи между квантовой механикой и классической статистической механикой, что позволяет естественное сравнение между ними в так называемом классическом пределе, то есть при . Квантовая механика в фазовом пространстве часто выступает в определённых приложениях квантовой оптики (см. оптическое фазовое пространство[англ.]), при изучении декогеренции и целом ряде специальных технических проблем, хотя этот формализм редко используется на практике[6]. Концептуальные идеи, лежащие в основе развития квантовой механики в фазовом пространстве, воплотились в математических ответвлениях, таких как алгебраическая теория деформирования (см. формула квантования Концевича[англ.]) и некоммутативная геометрия. Распределение в фазовом пространствеРаспределение в фазовое пространстве f(x,p), которое описывает квантовое состояние это квазивероятностное распределение[англ.]. В представлении фазового пространства, распределение можно рассматривать как основополагающее, примитивное описание квантовой системы, без каких-либо ссылок на волновые функции или матрицы плотности[7]. Существует несколько различных способов представления распределений, но все они взаимосвязаны[8][9]. Наиболее примечательным является представление Вигнера, W(x,p), обнаруженое первым. Другие представления (приблизительно в порядке убывания распространённости в литературе) включают P представление Глаубера — Сударшана[англ.][10][11], Q представление Хусими[англ.][12], представление Кирквуда — Рихачека, представление Мехты, представление Ривьера и представление Борна — Иордана[9][13]. Эти альтернативы наиболее полезны, когда гамильтониан принимает особую форму, например при нормальном порядке для операторов[англ.] в P представления Глаубера — Сударшана. Поскольку представление Вигнера является самым распространенным в литературе, то в этой статье, как правило, рассматривается оно, если не указано иное. Распределение в фазовом пространстве обладает свойствами подобными плотности вероятности в 2n-мерном фазовом пространстве. Например, оно является вещественнозначным, в отличие от комплекснозначной волновой функции. Мы можем понимать вероятность, нахождения внутри координатного интервала. Например, путем интегрирования функция Вигнера по всем импульсам и по координатам в интервале [a,b] получим: Если Â(x,p) — оператор, представляющий наблюдаемую величину, то ему можно сопоставить в фазовом пространстве, величину A(x, p) через преобразование Вигнера. Наоборот, этот оператор можно восстановить через преобразование Вейля. Среднее значение наблюдаемой по отношению к распределению в фазовом пространстве задаётся выражением[14] Однако, несмотря на внешнее сходство, W(x,p) не обладает всеми свойствами подлинного совместного распределения вероятностей, потому что области под ним не являются взаимно исключающими, как требуется в четвёртой аксиоме теории вероятности (аксиома аддитивности). Кроме того, оно может, в общем случае, принимать отрицательные значения[англ.] даже для чистых состояний, за уникальным исключением сжатых когерентных состояний и, соответственно, нарушать вторую аксиому Колмогорова. Области с такими отрицательными значениями «малы»: они не могут распространяться на компактные области больше, чем несколько ħ, и, следовательно, исчезают в классическом пределе. Они защищены неопределенностью Гейзенберга, которая не позволяет точно локализовать частицу в пределах области фазового пространства меньше, чем ħ, и, таким образом, делает такие «отрицательные вероятности» менее парадоксальными. Если левую часть уравнения можно интерпретировать как среднее значение в гильбертовом пространстве по отношению к оператору, то в контексте квантовой оптики это уравнение известно как оптическая теорема эквивалентности[англ.]. (Подробнее о свойствах и интерпретации функции Вигнера, смотрите главную статью.) Альтернативный подход к квантовой механике в фазовом пространстве стремится определить волновую функцию (не только квазивероятностной плотности) на фазовом пространстве, обычно с помощью преобразования Сегала — Бергмана[англ.]. Для совместимости с принципом неопределенности, волновая функция в фазовом пространстве не может быть произвольной функцией, иначе частицу можно было бы локализовать в сколь угодно малой области фазового пространства. Скорее, преобразование Сегала — Бергмана является голоморфной функцией от x+ip. Существует квазивероятностная плотность, связанная с волновой функцией в фазовом пространстве; это Q представление Хусими волновой функции в координатном представлении. Звёздочное произведениеФундаментальный некоммутативный бинарный оператор в фазовом пространстве, который заменяет стандартный оператор умножения — это звёздочное произведение, обозначаемое символом ★. Каждое представление распределения в фазовом пространстве имеет различные звёздочные произведения. Для конкретности, здесь рассматривается звёздочное произведение, соответствующее представлению Вигнера — Вейля.
Дифференциальное определение звёздочного произведения где аргумент экспоненциальной функции представляется в виде степенного ряда. Введённые дифференциальные соотношения позволяют записать это выражение в виде разницы в аргументах f и g: Также возможно переписать ★-произведение как конволюцию,[15] через преобразование Фурье: Таким образом, например,[7] гауссианы преобразуются через гиперболическую функцию или и т. д.. Собственные состояния гамильтониана для распределений известны как «звёздочные состояния», ★-состояния или ★-собственные функции, а соответствующие им собственные значения известны как звёздочные собственные значения или ★-собственные значения. Эти решения находятся аналогично как для стационарного уравнения Шрёдингера, используя уравнения для ★-собственных значений[16][17], где H — гамильтониан, простая функция в фазовом пространстве обычно аналогичная классическому гамильтониану. Эволюция во времениЭволюция во времени[англ.] распределения в фазовом пространстве задаётся квантовой модификацией лиувиллевского потока[2][9][18]. Эта формула является результатом применения преобразования Вигнера к версии квантового уравнения Лиувилля для матрицы плотности или уравнением фон Неймана. В любом представлении распределения в фазовом пространстве со своим ассоциированным звёздочным произведением эволюция во времени определяется уравнением или для функции Вигнера в частности где {{ , }} — скобки Мояля, преобразование Вигнера квантового коммутатора, а { , } — классические скобки Пуассона.[2] Это чёткий пример принципа соответствия: это уравнение явно сводится к классическому уравнению Лиувилля в пределе ħ → 0. Однако в квантовом потоке, плотность точек в фазовом пространстве не сохраняется, и вероятностная жидкость становится «диффузионной» и "сжимаемой"[2]. Таким образом, концепция траектории квантовой частицы не определяется точно. Учитывая ограничения, установленные принципом неопределенности в отношении локализации, Нильс Бор отрицал физическое существование таких траекторий в микроскопическом масштабе. С помощью формальных траекторий в фазовом пространстве, временное уравнение для функции Вигнера можно строго решить с помощью метода интегралов по траекториям[19] и метода квантовых характеристик[англ.][20], хотя есть неустранимые практические препятствия в обоих случаях. См. фильм для потенциала Морзе, ниже, чтобы оценить быстрое распространение потенциальных траекторий. ПримерыПростой гармонический осциллятор![]() Гамильтониан для простого гармонического осциллятора в одномерном случае в представлении Вигнера — Вейля равен Уравнение на ★-собственные значений для статической функции Вигнера имеет вид ![]() ![]()
Это означает, что можно записать ★-собственные значения как функцию одного аргумента, С этой заменой переменных, можно записать действительную часть уравнения на ★-собственные значения в форме модифицированного уравнения Лагерра (не Эрмита), решения которого включают в себя полиномы Лагерра в виде[17] введенные Груневолдом в его статье[1], которые соответствуют ★-собственным значениям Для гармонического осциллятора эволюция во времени произвольного распределения Вигнера тривиальна. Начальная функция W(x,p; t=0) = F(u) развивается во времени с помощью приведенного выше уравнения для гамильтониана осциллятора — она просто жёстко вращается в фазовом пространстве,[1] Как правило, «холм» (или когерентное состояние) энергии E ≫ ħω может представлять макроскопическую величину и выглядит как классический объект, равномерно вращающийся в фазовом пространстве и напоминает простой механический осциллятор (см. Анимированные фигуры). Интегрируя по всем фазам (начальные позиции при t = 0) таких объектов, непрерывный «палисад», дает не зависящую от времени конфигурацию, аналогичную приведенным выше статическим ★-состояниям F(u) и интуитивную визуализацию классического предела[англ.] для систем с большим действием.[6] Угловой момент свободной частицыПредположим, что частица первоначально находится в минимально неопределенном гауссовском состоянии, причем ожидаемые значения положения и импульса центрированы в начале координат в фазовом пространстве. Функция Вигнера для такого свободно распространяющегося состояния, где α — параметр, описывающий начальную ширину гауссиана и τ = m/α2ħ. Первоначальное положение и импульсы некоррелированы. Таким образом, в трех измерениях мы ожидаем, что векторы положения и импульса будут в два раза более вероятно расположены перпендикулярно друг другу, чем параллельно. Однако положение и импульс становятся все более коррелированными по мере того, как состояние эволюционирует во времени, поскольку части распределения дальше от центра соответствуют большему импульсу: асимптотически Это относительное «сжатие» отражает распространение пакета свободной волны в координатном пространстве. Действительно, можно показать, что кинетическая энергия частицы становится асимптотически радиальной только в согласии со стандартным квантовомеханическим представлением о ненулевом угловом моменте основного состояния, определяющем независимость от направления:[22] Потенциал МорзеПотенциал Морзе используется для аппроксимации колебательной структуры двухатомной молекулы. Квантовое туннелированиеТуннелирование — это ключевой квантовый эффект, когда квантовая частица, не обладающая достаточной энергией для пролёта выше барьера, все же проходит через него. Этот эффект не существует в классической механике. Потенциал четвёртой степениСостояние кота Шрёдингера![]() Ссылки
|
Portal di Ensiklopedia Dunia