Твёрдый раствор
Твёрдые растворы — фазы переменного состава, в которых атомы различных элементов расположены в общей кристаллической решётке. КлассификацияМогут быть неупорядоченными (с хаотическим расположением атомов), частично или полностью упорядоченными. Экспериментально упорядоченность определяют, главным образом, рентгеноструктурным анализом. Способность образовывать твёрдые растворы свойственна всем кристаллическим твёрдым телам. В большинстве случаев она ограничена узкими пределами концентраций, но известны системы с непрерывным рядом твёрдых растворов (например, Cu—Au, Ti—Zr, GaAs—GaP). По существу, все кристаллические вещества, считающиеся чистыми, представляют собой твёрдые растворы с очень малым содержанием примесей. Различают три вида твёрдых растворов (растворяем компонент B в решётке растворителя A):
Согласно полуэмпирическим правилам Юм-Розери[1], непрерывный ряд твёрдых растворов замещения в металлических системах образуются лишь теми элементами, которые, во-первых, имеют близкие по размерам атомные радиусы (отличающиеся не более чем на 15 %) и, во-вторых, находятся не слишком далеко друг от друга в электрохимическом ряду напряжений. При этом элементы должны иметь один и тот же тип кристаллической решётки. В твёрдых растворах на основе полупроводников и диэлектриков, благодаря более «рыхлым» кристаллическим решёткам образование твёрдых растворов замещения возможно и при большем различии атомных радиусов. Растворы внедрения образуются если атомы компонентов существенно различаются по размерам или электронной структуре, возможно внедрение атомов одного элемента в междоузлия решётки, образованной другим элементом. Подобные твёрдые растворы часто образуются при растворении неметаллов (B, H2, O2, N2, C) в металлах[2]. Твёрдые растворы вычитания, возникающие за счёт появления в кристаллической решётке вакантных узлов, образуются при растворении одного из компонентов в химическом соединении и характерны для нестехиометрических соединений. Так как при образовании твёрдого раствора кристаллическая решётка растворителя заметно искажается, то его образование практически всегда сопровождается изменением периодов решетки. В общем случае, оно может быть непростым, но для грубых оценок этих изменений в материаловедении используют правило Вегарда, исходящее из предположения линейных изменений. Природные минералы часто представляют собой твёрдые растворы (смотрите Изоморфизм в кристаллах). Образование твёрдых растворов при легировании элементов и соединений имеет большое значение в производстве сплавов, полупроводников, керамики, ферритов. Твёрдые растворы — основа всех важнейших конструкционных и нержавеющих сталей, бронз, латуней, алюминиевых и магниевых сплавов высокой прочности. Свойства твёрдых растворов регулируют их составом, термической или термомеханической обработкой. Легированные полупроводники и многие сегнетоэлектрики, являющиеся основой современной твердотельной электроники, также являются твёрдыми растворами. При распаде твёрдых растворов сплавы приобретают новые свойства. Наиболее ценными качествами обладают сплавы с очень тонкой неоднородностью — так называемые дисперсионно-твердеющие, или стареющие твёрдые растворы. Дисперсионное твердение может наблюдаться и при распаде твёрдых растворов на основе соединений, например, нестехиометрических шпинелей. Модель регулярного раствораДля изучения свойств реальных твёрдых растворов может быть использована модель регулярного раствора. В основе модели лежат следующие приближения:
Рассмотрим образование регулярного раствора на примере смешения двух образцов с атомами типа A и B. Потенциальная энергия образцов:
где — количество связей между атомами и их энергия в образце A. После смешивания: Если — координационное число, то для количеств связей можно записать следующие выражения: где — число атомов типа A. После подстановки получаем для E:
где последнее слагаемое описывает изменение энергии при смешении. Используя тот факт, что атомы в растворе распределены случайно, найдем . Каждый атом B имеет соседей. Среднее количество атомов A вокруг атома B должно быть пропорционально концентрации атомов A в системе. Тогда имеем: Количество связей A-B:
где . Наконец, имеем выражение для потенциальной энергии смешения регулярного раствора: Примечания
См. такжеЛитература
|
Portal di Ensiklopedia Dunia