Теорема Планшереля

Теорема Планшереля — утверждение о свойствах преобразования Фурье. Она утверждает, что для всякой функции, квадрат модуля которой интегрируем, существует и однозначно определена с точностью до значений на множестве меры нуль функция, являющаяся её преобразованием Фурье. Была доказана Планшерелем в 1910 году[1]. Играет важную роль в функциональном анализе.

Формулировка

Для всякой функции действительного переменного , принадлежащей множеству функций, чей квадрат модуля интегрируем на интервале , существует такая функция действительного переменного , также принадлежащая на интервале , что

.

Также выполняются равенства:

и

.

Функция , являющаяся преобразованием Фурье функции , однозначно определена с точностью до её значений на множестве меры нуль[2].

См. также

Примечания

  1. Plancherel, Michel; Mittag-Leffler (1910), Contribution à l'étude de la représentation d'une fonction arbitraire par les intégrales définies, Rendiconti del Circolo Matematico di Palermo, 30 (1): 289–335, doi:10.1007/BF03014877
  2. Н. Винер, Р. Пэли Преобразование Фурье в комплексной области. — М., Наука, 1964. — С. 10—11.

Литература

  • C. Бохнер Лекции об интегралах Фурье. — М., Физматлит, 1962. — 360 c.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya