Топологическое телоТопологическое тело — тело, наделённое топологией, согласованной с основными операциями, то есть топологическое кольцо с единицей, в котором на всех ненулевых элементах определена непрерывная операция взятия обратного элемента. Основной результат о топологических телах получен Львом Понтрягиным в 1931 году: всякое локально компактное связное топологическое тело является либо полем вещественных чисел, либо полем комплексных чисел, либо телом кватернионов[1]. Колмогоров использовал этот результат при прямом построении действительной и комплексной проективной геометрии[2][3]. Теорема Ковальского: локально компактное несвязное тело всюду разрывно, то есть не содержит связных подмножеств, и могут иметься два взаимно исключающих случая:
В обоих случаях элементы поля перестановочны по умножению с элементами тела и имеется конечный линейный базис тела над полем . Именно, такая система элементов что каждый элемент записывается в виде ()[4]. Примечания
Литература
|
Portal di Ensiklopedia Dunia