Тригонометрическое числоВ математике тригонометрическое число (англ. trigonometric number)[1] — иррациональное число, полученное как синус или косинус рационального числа оборотов или, что то же самое, синус или косинус угла, величина которого в радианах является рациональным кратным числа пи, или синус или косинус рационального числа градусов. Вещественное число, отличное от 0, 1, −1, является тригонометрическим числом тогда и только тогда, когда оно является вещественной частью корня из единицы. Доказательства теорем об этих числах дал канадско-американский математик Айвен Нивен[1], впоследствии его доказательства улучшили и упростили Ли Чжоу и Любомир Марков[2]. Любое тригонометрическое число может быть выражено через радикалы. Таким образом, каждое тригонометрическое число является алгебраическим числом. Последнее утверждение можно доказать[1], взяв за основу формулу Муавра для случая для взаимно простых k и n: Расширение левой части и приравнивание вещественных частей дает уравнение в и подставляя , получаем уравнение полинома, имеющее своим решением, поэтому последнее по определению является алгебраическим числом. Также является алгебраическим числом, поскольку он равен алгебраическому числу Наконец, , где является рациональным, кратным , является алгебраическим, что можно получить, приравнивая мнимые части двух сторон разложения уравнения Муавра друг к другу и разделив на для получения полиномиального уравнения в Примечания
|
Portal di Ensiklopedia Dunia