Золото́е сече́ние (золота́я пропо́рция, иначе: деле́ние в кра́йнем и сре́днем отноше́нии, гармони́ческое деление) — отношение частей и целого, при котором отношения частей между собой и целого к наибольшей части равны. Такие отношения наблюдаются в природе, открыты в науке и соблюдаются в искусстве. На «золотых отрезках» основываются различные системы и способы пропорционирования в архитектуре. Соотношение двух величин и , при котором бо́льшая величина относится к меньшей так же, как сумма этих величин к бо́льшей, то есть , является универсальным. Отсюда название, которое впервые появилось в эпоху Возрождения, в частности в трактате францисканского монаха, математика Луки ПачолиБожественная пропорция (лат.De Divina Proportione (1509 год)), но закономерность подобных отношений была известна гораздо раньше: в Древней Месопотамии, Египте и античной Греции.
Исторически в древнегреческой математике золотым сечением именовалось деление отрезка точкой на две части так, что бо́льшая часть относится к меньшей, как весь отрезок к большей: Это понятие было распространено не только на отрезки, но и на произвольные величины.
Число, равное отношению обычно обозначается прописной греческой буквой (фи), в честь древнегреческого скульптора и архитектора Фидия[2], реже — греческой буквой (тау).
Из исходного равенства (например, принимая за 1, за неизвестную переменную и за и решая получившуюся систему уравнений ) получается квадратное уравнение: а после его решения и два его корня: и
Для практических целей обычно ограничиваются приблизительным значением или В процентах округлённое значение золотого сечения — это деление некоторой величины в отношении 62 % к 38 %.
Иллюстрация к определению
Золотое сечение имеет множество замечательных свойств (например, 2 = + 1), но, кроме того, ему приписывают и многие вымышленные свойства[3][4][5].
В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος) впервые встречается в «Началах» Евклида (около 300 лет до н. э.), где оно применяется для построения правильного пятиугольника[6].
Неизвестно точно, кто и когда именно впервые ввёл в обращение термин «золотое сечение». Несмотря на то, что некоторые авторитетные авторы связывают появление этого термина с Леонардо да Винчи в XV веке[8] или относят появление этого термина к XVI веку[9], самое раннее употребление этого термина находится у Мартина Ома в 1835 году, а именно в примечании ко второму изданию его книги «Чистая элементарная математика»[10], в котором Ом пишет, что это сечение часто называют золотым сечением (нем.goldener Schnitt). Из текста этого примечания следует, что Ом не придумал этот термин сам[11][12]. Тем не менее, исходя из того, что в первом издании своей книги Ом еще не употреблял этот термин[13], Роджер Герц-Фишлер делает вывод о том, что этот термин, возможно, появился в первой четверти XIX века[14]. Марио Ливио считает, что он получил популярность в устной традиции около 1830 года.[15] В любом случае именно после Ома термин стал распространён в немецкой математической литературе[16].
Если угол между диагональю и меньшей стороной прямоугольника, относящейся к большей стороне как 1:2, поделить пополам, то по формуле тангенса половинного угла получится соотношение:
представляется в виде бесконечной цепочки квадратных корней:
Отрезание квадрата от прямоугольника, имеющего золотую пропорцию
Отрезав квадрат от прямоугольника, построенного с золотой пропорцией, мы получаем новый, уменьшенный прямоугольник с тем же отношением сторон что и у исходного прямоугольника
Продолжая отрезать квадраты против часовой стрелки получим согласно рисунку координаты предельной точки Более того, это точка будет лежать на пересечении диагоналей первого и второго прямоугольников.
Золотое сечение в пятиконечной звезде
В правильной пятиконечной звезде каждый отрезок делится другим отрезком, пересекающим его, в золотом сечении. На приведённом рисунке отношения красного отрезка к зелёному, зелёного к синему и синего к пурпурному равны Кроме того, отношение красного отрезка к расстоянию между любыми соседними вершинами звезды, которое равно зелёному отрезку, также равно
Построение золотого сечения
Геометрическое построение. Золотое сечение отрезка можно построить следующим образом: в точке проводят перпендикуляр к откладывают на нём отрезок равный половине на отрезке откладывают отрезок равный и наконец на отрезке откладывают отрезок равный Тогда:
Другой способ построить отрезок, равный по длине числу золотого сечения
Другой способ построить отрезок, равный по длине числу золотого сечения, — это начертить квадрат ABCD со стороной 1, после этого одну из сторон, например сторону AD, разделить точкой E пополам, так что AE = DE = 1/2, далее от точки B или C до точки E провести гипотенузу треугольника АВЕ или DCE. Согласно теореме Пифагора. Затем провести дугу с центром в точке Е от точки В или точки С до прямой, где лежит сторона AD и точка пересечения где будет называться Н. Стороны BE, СЕ и ЕН равны как радиусы окружности. Так как АН = АЕ + ЕН, то отрезок АН длины и будет результатом. Кроме того, поскольку DH = EH – ED, отрезок DH будет иметь длину [17].
разложение суммы или разности пятых степеней использует золотое сечение:
Золотое сечение в физике, геометрии, химии
Общее сопротивление этой бесконечной цепи равно
Золотое число возникает в разных задачах, в том числе в физике. Например, бесконечная электрическая цепь, приведённая на рисунке, имеет общее сопротивление (между двумя левыми концами)
Золотое сечение тесно связано с симметрией пятого порядка, наиболее известными трёхмерными представителями которой являются додекаэдр и икосаэдр. Можно сказать, что всюду, где в структуре проявляются додекаэдр, икосаэдр или их производные, там в описании будет появляться и золотое сечение. Например, в пространственных группировках атомов бора: В-12, В-50, В-78, В-84, В-90, …, В-1708, имеющих икосаэдрическую симметрию[18].
Молекула воды, у которой угол между связями Н-О равен 104,7°, то есть близок к 108 градусам (равен углу в правильном пятиугольнике), может соединяться в плоские и трехмерные структуры с симметрией пятого порядка. Так, в разреженной плазме был обнаружен ион Н+(Н20)21, который представляет собой ион Н30+, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра[19]. В 80-х годах XX века были получены клатратные соединения, содержащие гексааквакомплекс кальция, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра[20]. Есть и клатратные модели воды, в которых обыкновенная вода отчасти состоит из молекул воды, соединённых в структуры с симметрией пятого порядка. Такие структуры могут состоять из 20, 57, 912 молекул воды[21].
Золотое сечение и гармония в искусстве
Иллюстрация композиционного значения золотого сечения
Некоторые из утверждений в доказательство гипотезы знания древними правила золотого сечения:
По мнению Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции. В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления, и т. д.
Использование пропорции «золотого сечение» в пропорциях канонов человеческого тела, судя по историческим документам[каким?], вызывает очень большие сомнения. Начиная с работы Адольфа Цейзинга сформировалась целая система мифов о «золотом сечении»[22].
Иоганн Себастьян Бах в своей трёхголосной инвенции E-dur № 6 BWV 792 использовал двухчастную форму, в которой соотношение размеров частей соответствует пропорциям золотого сечения. 1 часть — 17 тактов, 2 часть — 24 такта (небольшие несоответствия выравниваются за счёт ферматы в 34 такте)[24].
Живые системы также обладают свойствами, характерными для «золотого сечения». Например: пропорции тел, спиральные структуры (филлотаксис) или параметры биоритмов[25][неавторитетный источник] и др.
↑ 12Савин А.Число Фидия — золотое сечение (рус.) // "Квант" : Научно-популярный физико-математический журнал (издается с января 1970 года). — 1997. — № 6. Архивировано 4 марта 2016 года.
↑Современная Кристаллография / под ред. Б. К. Вайнштейна. — Т. 2. — М.: Мир, 1979.
↑Holland P. M. Casteiman A. W. A model for the formation and stabilization of chorqed water cluthrates // J. Chem. Phys.. — 1980. — Т. 72, № 1(11). — С. 5984.
↑Электромагнитные поля в биосфере. — Сборник трудов конференции, Т. 2. — М., 1984. — С. 22.
↑Зенин С. В. Структурированное состояние воды как основа управления поведением и безопасностью живых систем. — Диссертация докт. биол. наук. — М., 1999.
Васютинский Н. А. Золотая пропорция. — М.: Молодая гвардия, 1990. — 238[2]c. — (Эврика).
Власов В. Г. Золотое сечение, или Божественная пропорция // Власов В. Г. Новый энциклопедический словарь изобразительного искусства: В 10 т. — Т.3. — СПб.: Азбука-Классика, 2005. — С. 725—732.
Власов В. Г. Приемы гармонизации пространства в классической архитектуре // Власов В. Г. Искусство России в пространстве Евразии. — Т.3. Классическое искусствознание и «русский мир». — СПб.: Дмитрий Буланин, 2012. — С. 156—192.
Мазель Л. А. Опыт исследования золотого сечения в музыкальных построениях в свете общего анализа форм // Музыкальное образование. — 1930. — № 2. — С. 24—33.
Сабанеев Л. Л. Этюды Шопена в освещении закона золотого сечения. Опыт позитивного обоснования законов формы // Искусство. — 1925. — № 2. — С. 132—145; 1927. — № 2—3. — С. 32—56.
Шевелев И. Ш., Марутаев М. А., Шмелев И. Л. Золотое сечение. Три взгляда на природу гармонии (рус.). — М.: Стройиздат, 1990. — 343 с. — ISBN 5-274-00197-1.
Шевелев И. Ш. Геометрическая гармония. Опыт исследования пропорциональности в архитектуре (рус.). — Кострома, 1963. — 107 с.
Шмигевский Н. В. Формула совершенства // Страна знаний. — 2010. — № 4. — С. 2—7.
J. J. O'Connor, E. F. Robertson.Golden ratio (неопр.). MacTutor History of Mathematics archive. School of Mathematics and Statistics, University of St Andrews, Scotland. Дата обращения: 13 ноября 2015. Архивировано 25 июля 2015 года.