Шахматная доска Фейнмана с двумя путями, вносящими вклад в сумму для пропагатора из (, ) = (0, 0) в (3, 7)
Шахматная доска Фейнмана (релятивистскаяшахматная доска) — предложенная Ричардом Фейнманом модель, иллюстрирующая формулировку «суммы по путям» для интеграла по траекториям свободной частицы со спином ½, движущейся в одном пространственном измерении. Она обеспечивает представление решений уравнения Дирака в (1 + 1) -мерном пространстве-времени в виде дискретных сумм.
Модель можно визуализировать, рассматривая релятивистские случайные блуждания на двумерной шахматной доске пространства-времени. На каждом дискретном временном шаге частица массы проходит расстояние влево или вправо ( — скорость света). Для такого дискретного движения интеграл по Фейнману сводится к сумме по возможным путям. Фейнман продемонстрировал, что если каждый «поворот» (изменение движения слева направо или наоборот) пути в пространстве-времени взвешивается с коэффициентом ( — приведенная постоянная Планка), в пределе бесконечно малых квадратов шахматной доски сумма всех взвешенных путей дает пропагатор, который удовлетворяет одномерному уравнению Дирака. В результате спиральность (одномерный эквивалент спина) получается из простого правила типа клеточных автоматов.
Модель шахматной доски важна, потому что она связывает спин и хиральность с распространением в пространстве-времени[1] и является единственной формулировкой суммы по пути, в которой квантовая фаза дискретна на уровне путей, принимая только значения, соответствующие корню 4-й степени из единицы .
История
Фейнман изобрел модель в 1940-х годах при разработке своего пространственно-временного подхода к квантовой механике.[2] Он не опубликовал результат, пока он не появился в тексте об интегралах по путям, соавтором которого был Альберт Хиббс в середине 1960-х годов.[3] Модель не была включена в оригинальную статью с интегралом по траектории потому что подходящее обобщение для четырехмерного пространства-времени не было найдено.[4]
Одна из первых связей между амплитудами, предписанными Фейнманом для частицы Дирака в 1 + 1 измерениях, и стандартной интерпретацией амплитуд в терминах ядра или пропагатора, была установлена Джаянтом Нарликаром в детальном анализе.[5] Название «модель шахматной доски Фейнмана» было придумано Гершем, когда он продемонстрировал ее связь с одномерной моделью Изинга.[6] Гаво и соавторы обнаружили связь между моделью и стохастической моделью телеграфных уравнений благодаря Марку Кацу посредством аналитического продолжения.[7] Якобсон и Шульман рассмотрели переход от релятивистского к нерелятивистскому интегралу пути.[8] Впоследствии Орд показал, что модель шахматной доски была встроена в корреляции в первоначальной стохастической модели Каца[9] и поэтому имела чисто классический контекст, свободный от формального аналитического продолжения.[10] В том же году Кауфман и Нойес[11] выпустили полностью дискретную версию, касающуюся физики битовых струн, которая превратилась в общий подход к дискретной физике.[12]
Расширения
Хотя Фейнман не дожил до публикации расширений модели шахматной доски, из его архивных заметок видно, что он был заинтересован в установлении связи между корнями 4-й степени из единицы (используемых в качестве статистических весов на путях шахматной доски) и своим совместным с Дж. А. Уилером открытием, что античастицы эквивалентны частицам, движущимся назад во времени. Его заметки содержат несколько набросков дорожек шахматной доски с добавленными пространственно-временными петлями.[13] Первым расширением модели, которая явно содержала такие петли, была «спиральная модель», в которой на шахматной доске допускались спиральные траектории в пространстве-времени. В отличие от случая с шахматной доской, причинно-следственная связь должна быть реализована явно, чтобы избежать расхождений, однако с этим ограничением уравнение Дирака возникло как предел континуума.[14] Далее роли «дрожащего движения», античастиц и моря Дирака в модели шахматной доски были выяснены[15] и через нерелятивистский предел рассмотрены следствия для уравнения Шредингера.[16]
Дальнейшие расширения исходной 2-мерной модели пространства-времени включают такие особенности, как улучшенные правила суммирования[17] и обобщенные решетки.[18] Не было единого мнения об оптимальном расширении модели шахматной доски до полностью четырехмерного пространства-времени. Существуют два различных класса расширений: те, которые работают с фиксированной базовой решеткой[19][20] и те, которые встраивают двумерный случай в пространство более высокой размерностью.[21][22] Преимущество первого состоит в том, что сумма по путям ближе к нерелятивистскому случаю, однако простая картина единственной, не зависящей от направления скорости света теряется. В последних расширениях свойство фиксированной скорости поддерживается за счет переменных направлений на каждом шаге.
↑Gaveau, B. Relativistic Extension of the Analogy between Quantum Mechanics and Brownian Motion (англ.) // Physical Review Letters : journal. — American Physical Society (APS), 1984. — 30 July (vol. 53, no. 5). — P. 419—422. — ISSN0031-9007. — doi:10.1103/physrevlett.53.419.
↑Rosen, Gerald. Feynman path summation for the Dirac equation: An underlying one-dimensional aspect of relativistic particle motion (англ.) // Physical Review A : journal. — American Physical Society (APS), 1983. — 1 August (vol. 28, no. 2). — P. 1139—1140. — ISSN0556-2791. — doi:10.1103/physreva.28.1139.