Natrijum dodecil sulfat je organsko jedinjenje, koje sadrži 12 atoma ugljenika i ima molekulsku masu od 288,379 Da.[4][5][6][7][8][9][10][11]
Osobine
Reference
- ^ Joanne Wixon; Douglas Kell (2000). „Website Review: The Kyoto Encyclopedia of Genes and Genomes — KEGG”. Yeast. 17 (1): 48—55. doi:10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H.
- ^ Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today. 15 (23-24): 1052—7. PMID 20970519. doi:10.1016/j.drudis.2010.10.003. уреди
- ^ Evan E. Bolton; Yanli Wang; Paul A. Thiessen; Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry. 4: 217—241. doi:10.1016/S1574-1400(08)00012-1.
- ^ Agner, T. (1991). „Susceptibility of atopic dermatitis patients to irritant dermatitis caused by sodium lauryl sulphate”. Acta Dermato-Venereologica. 71 (4): 296—300. PMID 1681644. doi:10.2340/0001555571296300.
- ^ Marrakchi, S.; Maibach, H. I. (2006). „Sodium lauryl sulfate-induced irritation in the human face: Regional and age-related differences”. Skin Pharmacology and Physiology. 19 (3): 177—80. PMID 16679819. doi:10.1159/000093112.
- ^ Löffler, H.; Effendy, I. (мај 1999). „Skin susceptibility of atopic individuals”. Contact Dermatitis. 40 (5): 239—42. PMID 10344477. doi:10.1111/j.1600-0536.1999.tb06056.x.
- ^ Chahine, L.; Sempson, N.; Wagoner, C. (децембар 1997). „The effect of sodium lauryl sulfate on recurrent aphthous ulcers: A clinical study”. Compendium of Continuing Education in Dentistry (Jamesburg, N.j. : 1995). 18 (12): 1238—40. PMID 9656847.
- ^ Herlofson, B. B.; Barkvoll, P. (јун 1996). „The effect of two toothpaste detergents on the frequency of recurrent aphthous ulcers”. Acta Odontologica Scandinavica. 54 (3): 150—3. PMID 8811135. doi:10.3109/00016359609003515.
- ^ Piret, J.; Désormeaux, A.; Bergeron, M. G. (фебруар 2002). „Sodium lauryl sulfate, a microbicide effective against enveloped and nonenveloped viruses”. Current Drug Targets. 3 (1): 17—30. PMID 11899262. doi:10.2174/1389450023348037.
- ^ Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A. C.; Wishart, D. S. (2011). „DrugBank 3.0: A comprehensive resource for 'omics' research on drugs”. Nucleic Acids Research. 39 (Database issue): D1035—41. PMC 3013709
. PMID 21059682. doi:10.1093/nar/gkq1126.
- ^ Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. (2008). „DrugBank: A knowledgebase for drugs, drug actions and drug targets”. Nucleic Acids Research. 36 (Database issue): D901—6. PMC 2238889
. PMID 18048412. doi:10.1093/nar/gkm958.
- ^ Ghose, Arup K.; Viswanadhan, Vellarkad N.; Wendoloski, John J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods”. The Journal of Physical Chemistry A. 102 (21): 3762—3772. Bibcode:1998JPCA..102.3762G. doi:10.1021/jp980230o.
- ^ Tetko, I. V.; Tanchuk, V. Y.; Kasheva, T. N.; Villa, A. E. (2001). „Estimation of aqueous solubility of chemical compounds using E-state indices”. Journal of Chemical Information and Computer Sciences. 41 (6): 1488—1493. PMID 11749573. doi:10.1021/ci000392t.
- ^ Ertl, P.; Rohde, B.; Selzer, P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties”. Journal of Medicinal Chemistry. 43 (20): 3714—3717. PMID 11020286. doi:10.1021/jm000942e.
Literatura
Spoljašnje veze
|