இராமானுசன் கூட்டுகை

இராமானுசன் கூட்டுகை அல்லது ராமானுஜன் கூட்டுத்தொகை (Ramanujan summation) முடிவிலா மாறுபட்ட தொடரை ஒரு கூட்டுத்தொகைக்கு ஒதுக்குகிறது, இது கணித மேதை இராமானுசன் கண்டுபிடித்த ஒரு நுட்பம். ஒரு மாறுபட்ட தொடரின் ராமானுஜன் கூட்டுத்தொகை பாரம்பரிய உணர்வு ஒரு தொகை இல்லை என்றாலும், இது வழக்கமான கூட்டல் வரையறுக்கப்படாத இதில் மாறுபட்ட முடிவிலா தொடர், ஆய்வில் அது கணித பயனுள்ளதாக செய்யும் பண்புகளைக் கொண்டிருக்கிறது.

ராமானுசன்[1] p முடிவிலியை நோக்கி செல்வதாக கருதி எழுதிய சமன்பாடு

மேலுள்ளதில் C என்பது வரிசைக்கான ஒரு குறிப்பிட்ட மாறிலி. இதன் தொகையத்தின் (integral) தொடர்பகுப்பும் (analytic continuation) எல்லைகளும் இராமானுசனால் குறிப்பிடப்பெறவில்லை, ஆனால் மேலே உள்ளது போன்றது போன்றதாகக் கருதப்படுகின்றது. இந்த இரண்டு சமன்பாடுகளையும் ஒப்பிட்டு R சுழியத்தை நோக்கியும் ,x முடிவிலியை நோக்கியும் செல்வத்க கருதினால், பொது வகையானவற்றில் f(x) என்னும் வகையான சார்பியங்களில், x = 0 என்னும் மதிப்பில் விரிமை (divergence) இல்லாதபோது:

ஆகும். மேலுள்ளதில் இராமானுசன் என்பது உண்மை என்று முன்கோளாகக் கொண்டார். என்று எடுத்துச் சென்றால், பொதுவாகப் பெறப்படும் குவியுறும் (convergent) தொடர் வரிசையைச் சென்றடைவோம். x = 0 என்னும் மதிப்பில் விரிமை (divergence) எய்தாத சார்பியங்களுக்கு f(x), நாம் கீழ்க்கண்டவற்றைப் பெறலாம்:

C(0) என்பதை விரியுந்தொடர் (divergent sequence) இன் கூட்டுத்தொகைக்கு ஈடாகக் குறிக்கப்பெற்றது. இது கூட்டுகைக்கும் தொகையத்துக்கும் பாலமாக அமைந்தது போன்றது. தெரிந்த விரியுந்தொடரின் சீரரன நீட்சிக்கு, அவர் இராமானுசன் கூட்டுகையைக் கணக்கிட்டார். குறிப்பாக 1 + 2 + 3 + 4 + · · · என்பதின் கூட்டுத்தொகை,

ஆகும். மேலுள்ளதில் என்னும் குறியீட்டு முறை இராமானுசன் கூட்டுகையையைக் குறிப்பிடுகின்றது. இந்தச் சமன்பாடு முதன்முதல் இராமனுசன் கைக்குறிப்பேட்டில் (Notebook) காணப்பட்டது ஆனால் இராமானுசன் கூட்டுகைக்கான குறியீடு என்று தெளிவாக காட்டப்பெறவில்லை.

இரட்டைப்படை படியங்களுக்கு (powers):

மேலும் ஒற்றைப்படை படியங்களுக்கு, பெர்னூலி (Bernoulli) எண்கள் வழி ஓர் சமன்பாடு உண்டு:

இவை இரீமன் இசீட்டா சார்பியத்துடன் (Riemann zeta function) ஒத்திணங்கி உள்ளது.

குறிப்புதவிகள்

  1. Bruce C. Berndt, Ramanujan's Notebooks பரணிடப்பட்டது 2006-10-12 at the வந்தவழி இயந்திரம், Ramanujan's Theory of Divergent Series, Chapter 6, Springer-Verlag (ed.), (1939), pp. 133-149.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya