கிரமரின் விதிஒருங்கமை அட்சர கணிதத்தில் கிரமரின் விதி எனப்படுவது ஒரேயொரு தீர்வை மட்டும் உள்ளடக்கிய ஒருங்கமை சமன்பாட்டுத் தொகுதியின் தீர்வைக் காண்பதற்கான சூத்திரமாகும். இது சமன்பாட்டின் தீர்வை குணகத் தாயம் மற்றும் அதன் ஒவ்வொரு நிரலையும் மூலக்காவி கொண்டு பிரதியிடுவதன் மூலம் உருவாக்கப்படும் தாயங்களின் துணிகோவைகள் சார்பில் வெளிப்படுத்துகிறது. இம்முறையைக் கண்டுபிடித்த கபிரியேல் கிரமரின் (1704–1752) பெயரில் இது வழங்கப்படுகிறது. இவர் எந்தவொரு ஒருங்கமை சமன்பாட்டுத் தொகுதிக்கும் பொருந்தும் விதத்தில் இம் முறையை 1750இல் வெளியிட்டார்.[1] ஆயினும் இவற்றில் விசேட வகைகளுக்கான விதியை கொலின் மக்கிளோரின் என்பார் 1748இலேயே வெளியிட்டிருந்தார்.[2] (இதை அவர் 1729இலேயே கண்டுபிடித்திருந்தார்).[3][4][5] பொது வகைn தெரியாக்கணியங்களைக் கொண்ட n ஒருங்கமை சமன்பாடுகளையுடைய தொகுதியொன்றைக் கருதுக, இதன் தாயப் பெருக்கல் வடிவம் வருமாறு:
இங்கு n x n தாயம் ஒரு பூச்சியமல்லாத துணிகோவையைக் கொண்டுள்ளது. மேலும் காவி மாறிகளின் நிரல் காவியாகும். இப்போது தேற்றப்படி, இத்தொகுதி ஒரேயொரு தீர்வை மட்டுமே கொண்டுள்ளது. தீர்வுத்தொடையின் தனித்தனிப் பெறுமானங்கள் பின்வருமாறு தரப்படும். இங்கு என்பது யின் iவது நிரலை நிரல் காவி கொண்டு பிரதியிடுவதன் மூலம் உருவாகும் தாயமாகும். இவ்விதி மெய்யெண் புலம் மட்டுமன்றி எந்தவொரு புலத்திலும் குணகங்களையும் தெரியாக் கணியங்களையும் கொண்டுள்ள சமன்பாட்டுத் தொகுதிக்கும் பொருந்தும். மேற்கோள்கள்
|
Portal di Ensiklopedia Dunia