முப்பருமான யூக்கிளிடிய வெளியான R3 ஒரு நெறிய வெளியாகும். அதில் தோஓற்றப் புள்ளியூடாக்க் கடந்துசெல்லும் கோடுகளுக் தளங்களும் R3 எனும் வெளியின் துணை நெறிய வெளிகளாகும்.
நேரியல் இயற்கணிதம்(Linear algebra) என்பது நெறிய வெளிகளையும் அத்தகைய வெளிகளுக்கு இடையிலான நேரியல் உருமாற்றங்களையும் ஆயும் கணிதவியல் புலமாகும். இதுகோடுகளையும் தளங்களையும் பிற துணைவெளிகளையும்கருதுவதோடு, நெறிய வெளிகளின் பொது இயல்புகளையும் ஆய்கிறது.
ஒரு நேரியல் சமன்பாட்டினை நிறைவு செய்யும் புள்ளிகளின் கணமும் சார்ந்த ஆயங்களும் n-பருமான வெளியில் ஒரு மீத்தளத்தை உருவாக்குகின்றன. n மீத்தளங்களின் கணம் ஒரு புள்ளியில் வெட்டும் நிலைமைகள், நேரியல் இயற்கணித ஆய்வில் முதன்மையான குவியம் ஆகும். இத்தகைய ஆய்வு தொடக்கத்தில் பல அறியப்படாத மாறிகளைக் கொண்டநேரியல் சமன்பாடுகளின் அமைப்புத் தீர்வில் உருவாகியது. இவ்வகைச் சமன்பாடுகள் அணிக்கோவைகள், நெறியங்கள் போன்ற கணிதக் குறிமானங்களைப் பயன்படுத்தின.[1][2][3]
நேரியல் இயற்கணிதம், கோட்பாட்டு, பயன்முறைக் கணிதவியலின் மையக்கருவாகும். எடுத்துகாட்டாக, நுண்புல இயற்கணிதம் நெறிய வெளி சார்ந்த அடிக்கோள்களைத் தவிர்த்து பல பொதுமையாக்கங்களை முன்னிறுத்துகிறது. சார்புப் பகுப்பியல் நெறிய வெளிகளின் கோட்பாட்டின் முடிவிலாத பருமான வகையை ஆய்கிறது. கலனக் கணிதத் (நுண்கணிதத்) துணையோடு, நேரியல் இயற்கணிதம் நேரியல் நுண்கலனச் சமன்பாடுகளின் அமைப்புக்குத் தீர்வு காண்கிறது.
நேரியல் இயற்கணித நுட்பங்கள் கணிதத்தின் அனைத்துப் பிரிவுகளிலும், அறிவியல் புலங்களிலும் பேரளவில் பயன்படுகின்றன. இவை பகுமுறை வடிவியல்புள்ளியியல், இயற்பியல், மின்பொறியியல், மின்னன் பொறியியல் இயற்கை அறிவியல் புலங்கள், கணினி அறிவியல்கணினி அசைவூட்டம், உயர்நிலை முக அடையாளம் இனங்காணல், [[சமூக அறிவியல் புலங்கள், குறிப்பாக பொருளியல் ஆகிய துறைகளில் நேரியல் இயற்கணிதம் ஓர் இன்றியமையாத முறையாகும். கணிதத்தில் சார்புப் பகுப்பியல், நுண்புல இயற்கணிதம் ஆகியவற்றின் மொழியே நேரியல் இயற்கணிதம்தான். நேரியலற்ற கணிதப் படிமங்களின் பற்பல பயன்பாடுகளிலும் நேரியல் கணிதப் படிமங்களைக் கொண்டுதான் அவற்றைத் தோராயப்படுத்த வேண்டியிருக்கிறது.
வரலாறு
நேரியல் இயற்கணிதத் துறை நேரியல் சமன்பாடுகளின் அமைப்புக்குத் தீர்வு காண அணிக்கோவைகளை ஆயத் தொடங்கியபோதே உருவாகி விட்டது எனலாம். அணிக்கோவைகளை 1693 இல் கோட்பிரீடு வில்கெல்ம் இலைப்னிட்சு பயன்படுத்தினார். அதன் பிறகு, கேபிரியேல் கிரேமர், கிரேமர் விதியை நேரியலமைப்புகளுக்குத் தீர்வு காண 1750 இல் உருவாக்கினார். பின்னர், காசு தன் காசிய நீக்க முறையைப் பயன்படுத்தி நேரியல் அமைப்புகளுக்கான மேம்பட்ட கோட்பாட்டை வளர்த்தெடுத்தார். இது முதலில் புவிப்புற அளக்கையின் வளர்ச்சியாகக் கருதப்பட்டது.[4]
பிரெஞ்சுக் கணித இயலர்கள் வாண்டர்மாண்ட் (1771), இலாப்லாசு (1772), இலாகிரெஞ்சு (1773) ஆகியவர்களால் முதலில் உருவாக்கப்பட்டு, பிற்பாடு காசு (1801) (செருமனி), யாக்கோபி (1827) (பிரான்சு) ஆகியவர்களால் சீர்படுத்தப்பட்ட அணிக்கோவைகளின் கோட்பாடும் 20ம் நூற்றாண்டின் நேரியல் இயற்கணிதத்துக்கு வழிவகுத்தன. 1843இல் ஹாமில்டன் (அயர்லாந்து) குவாடர்னியன் கோட்பாட்டையும் சிக்கலெண்களுக்குகந்த சரியான விளக்கத்தையும் கொடுத்தார். இவர்தான் நெறியம் (vector) என்ற கலைச் சொல்லை அறிமுகப்படுத்தினார்.
அணிசார் இயற்கணித ஆய்வு 1800 களில் இங்கிலாந்தில் தோன்றியது. 1844 இல் எர்மன் கிராசுமன் தனது "Theory of Extension" (Die lineare Ausdehnunglehre) எனும் நூலை வெளியிட்டார். இதில் இன்று நேரியல் இயற்கணிதம் எனப்படும் துறையில் அடங்கிய பல அடிப்படை தலைப்புகளை விவாதித்திருந்தார். 1848 இல் ஜேம்சு ஜோசப் சில்விசுட்டர் அணி (matrix) எனும் சொல்லை இலத்தீன மொழியில் இதன் பொருள் கரு) அறிமுகப்படுத்தினார்.நேரியல் உருமாற்றங்களின் உட்கூறுகளை ஆய்வு செய்யும்போது, ஆர்த்தர் கெய்லி அணி பெருக்கலையும் தலைக்கீழ்நிலைகளையும் வரையறுக்க நேர்ந்துள்ளது. இதனால், கெய்லி (இங்கிலாந்து) 1857 இல் அணிகளைக்கொண்டு அணிகளுக்கான இயற்கணிதமுறை அடித்தளத்தை உருவாக்கினார்.கெய்லி அணியைக் குறிக்க ஒற்றை எழுத்தைக் குறியீடாகப் பயன்படுத்தினார். எனவே அவர் அணியை ஒருங்கிய கணிதப் பொருண்மையாக கருதியுள்ளார். இவர் அணிக்கும் அணிக்கோவைகளுக்கும் இடையில் உள்ள உறவை உணர்ந்துள்ளார். மேலும், அவர் "அணிக்கோவைகளின் கோட்பாட்டுக்கு முன் தோன்றிய அணிகளின் கோட்பாட்டைப் பற்றிக் கூற பல பொருண்மைகள் உள்ளன " என எழுதினார்.[4]
1882 இல் ஊசெயின் தெவ்பிக் பாழ்சா நேரியல் இயற்கணிதம் ( "Linear Algebra") எனும் நூலை எழுதினார்.[5][6] பியானோ 1888 இல் நெறிய வெளிக்கான மிகவும் புதியதும் துல்லியமானதுமான முதல் வரையறையைத் தந்தார்;[4] 1900 ஆம் ஆண்டளவில், வரம்புள்ள பருமான நெறியவெளிகளின்நேரியல் உருமாற்றத்துக்கான கோட்பாடு தோன்றியது.நேரியல் இயற்கணிதம் 20 ஆம் நூற்றாண்டு முன்னரையின் இடைப்பகுதியில், முந்தiய நூற்றாண்டுகளின் எண்ணக்கருக்களையும் முறைகளையும் நுண்புல இயற்கணிதம் ஆக பொதுமைப்படுத்தி, இன்றுள்ள புதிய வடிவத்தை அடைந்தது. குவைய இயக்கவியல், சிறப்புச் சார்பியல் கோட்பாடு, புள்ளியியல் ஆகிய துறைகளில் அணிகளின் பயன்பாடு, தனிக் கணிதவியலுக்கு அப்பாலும் நேரியல் இயற்கணிதம் விரிந்து பரவ வழிவகுத்தது. கணினிகளின் தோற்றம் காசிய நீகம், அணிபிரிகைகள் ஆகியவற்றுக்கான திறம்பட்ட படிமுறைத் தீர்வுகளின் ஆய்வை வளப்படுத்தியது. இதனால் நேரியல் இயற்கணிதம் படிம உருவாக்கத்துக்கும் ஒப்புருவாக்கத்துக்கும் முதன்மை வாய்ந்த கருவியாகியது.[4]
ஆனாலும் 20ம் நூற்றாண்டில் நுண்புல இயற்கணிதத்தில் வளையம் என்ற கருத்து வேரூன்றியபிறகுதான் எண்கள்போல் புழங்கும், ஆனால் எண்களல்லாத, அணிகளின் ஆழமான பாதிப்பு ஏற்படத் தொடங்கி, நேரியல் இயற்கணிதம் என்ற 20 ஆம் நூற்றாண்டின் கணிதத்துறை உருவாகியது. இதற்குத் துணைபோனது 1888இல் கால்டன் (இங்கிலாந்து) அறிமுகப்படுத்திய ஒட்டுறவுக்கெழுவைப் பற்றிய செயல்பாடுகளும் 20ம் நூற்றாண்டின் தொடக்கத்தில் அறிவியல் உலகத்தை உசுப்பிவிட்ட சிறப்புச் சார்பியல் கோட்பாடும் எனலாம்..
அணிக்கோவைகள், காசிய நீக்கம் ஆகிய கட்டுறைகளில் மேற்கூறிய எண்னக்கருக்கள் விரிவாக விவாதிக்கப்பட்டுள்ளன.
குறிப்புகள்
↑Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, ISBN978-1420095388
↑Strang, Gilbert (July 19, 2005), Linear Algebra and Its Applications (4th ed.), Brooks Cole, ISBN978-0-03-010567-8
↑Weisstein, Eric. "Linear Algebra". From MathWorld--A Wolfram Web Resource. Wolfram. Retrieved 16 April 2012.
Fearnley-Sander, Desmond, "Hermann Grassmann and the Creation of Linear Algebra", American Mathematical Monthly 86 (1979), pp. 809–817.
Grassmann, Hermann, Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik: dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert, O. Wigand, Leipzig, 1844.
அறிமுகப் பாடநூல்கள்
Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (1st ed.), Chapman and Hall/CRC, ISBN978-1420095388
Strang, Gilbert (May 2016), Introduction to Linear Algebra (5th ed.), Wellesley-Cambridge Press, ISBN978-09802327-7-6
Glazman, I. M.; Ljubic, Ju. I. (2006), Finite-Dimensional Linear Analysis, Dover Publications, ISBN978-0-486-45332-3
Golan, Johnathan S. (January 2007), The Linear Algebra a Beginning Graduate Student Ought to Know (2nd ed.), Springer, ISBN978-1-4020-5494-5
Golan, Johnathan S. (August 1995), Foundations of Linear Algebra, Kluwer, ISBN0-7923-3614-3
Golub, Gene H.; Van Loan, Charles F. (October 15, 1996), Matrix Computations, Johns Hopkins Studies in Mathematical Sciences (3rd ed.), The Johns Hopkins University Press, ISBN978-0-8018-5414-9
Greub, Werner H. (October 16, 1981), Linear Algebra, Graduate Texts in Mathematics (4th ed.), Springer, ISBN978-0-8018-5414-9
Hoffman, Kenneth; Kunze, Ray (1971), Linear algebra (2nd ed.), Englewood Cliffs, N.J.: Prentice-Hall, Inc., MR0276251