கணிதத்தில் சமனிலி (inequality) என்பது வெவ்வேறான இரு அளவுகளுக்கு இடையேயான உறவாகும்.
a என்பது b க்குச் சமமானதாக இல்லை என்பதைக் குறிக்கும் குறியீடு:
a என்பது b க்குச் சமமானதாக இல்லை என்பதை மட்டுமே, இக்குறியீடு காட்டுகிறது. இரண்டு மதிப்புகளில் எது பெரியது, எது சிறியது அல்லது அவை ஒப்பிடக் கூடியவையா போன்ற விவரங்களைத் தருவதில்லை.
இரண்டும் நேர் எண்கள் அல்லது இரண்டும் எதிர் எண்களாக அமையும் இரு மெய்யெண்கள் a , b எனில்:
a ≤ b எனில், 1/a ≥ 1/b.
a ≥ b எனில், 1/a ≤ 1/b.
ஒன்று நேர் எண், மற்றது எதிர் எண் என அமையும் இரு மெய்யெண்கள் a , b எனில்:
a < b எனில், 1/a < 1/b.
a > b எனில், 1/a > 1/b.
இவற்றைக் கீழுள்ளவாறு தொடர் குறியீட்டில் எழுதலாம்:
பூச்சியமற்ற இரு மெய்யெண்கள் a , b :
0 < a ≤ b எனில், 1/a ≥ 1/b > 0.
a ≤ b < 0 எனில், 0 > 1/a ≥ 1/b.
a < 0 < b எனில், 1/a < 0 < 1/b.
0 > a ≥ b எனில், 1/a ≤ 1/b < 0.
a ≥ b > 0 எனில், 0 < 1/a ≤ 1/b.
a > 0 > b எனில், 1/a > 0 > 1/b.
இருபுறத்திலும் சார்பைப் பயன்படுத்தல்
y = ln x இன் வரைபடம்
ஓரியல்பாகக் கூடும் சார்பொன்றை, அச்சார்பின் ஆட்களத்திலமைந்த ஒரு சமனிலியின் இருபுறமும் செயற்படுத்தும்போது, சமனிலியின் நிலையில் மாற்றம் இருக்காது.
ஓரியல்பாகக் குறையும் சார்பொன்றை, அச்சார்பின் ஆட்களத்திலமைந்த ஒரு சமனிலியின் இருபுறமும் செயற்படுத்தும்போது, சமனிலியின் நிலை நேர்மாறாக மாறும். நேர் எண்களின் கூட்டல் நேர்மாறு, பெருக்கல் நேர்மாறுகளுக்கான விதிகள், ஓரியல்பாகக் குறையும் சார்பைச் சமனிலியின் இருபுறமும் செயற்படுத்துவதற்கான எடுத்துக்காட்டுகளாகும்.
சமனிலி கண்டிப்பானதாகவும் (a < b, a > b), சார்பு கண்டிப்பாக கூடும் சார்பாகவும் இருந்தால், விளைவும் கண்டிப்பான சமனிலியாக இருக்கும். ஏதேனும் ஒன்று மட்டுமே இருக்குமானால் விளைவு, கண்டிப்பற்ற சமனிலியாக அமையும்.
(Q, +, ×, ≤), (R, +, ×, ≤) இரண்டும் வரிசைப்படுத்தப்பட்ட களங்கள் (Q, விகிதமுறு எண்களின் கணம்; R, மெய்யெண்களின் கணம்). (C, +, ×, ≤) ஒரு வரிசைப்படுத்தப்பட்ட களம் அல்ல (i இன் வர்க்கம் −1 என்பதால்)
மற்றும் a1, a2, …, an நேர் எண்கள் எனில் இச்சராசரிகளுக்கு இடையேயுள்ள சமனிலி:
அடுக்குச் சமனிலிகள்
a , b நேர் மெய்யெண்கள் அல்லது கோவைகள் எனில், ab வடிவ உறுப்புகள் கொண்ட சமனிலி, அடுக்குச் சமனிலி ஆகும்.
எடுத்துக்காட்டுகள்
x ஒரு மெய்யெண் எனில்,
x > 0 எனில்,
x ≥ 1 எனில்,
x, y, z > 0 எனில்,
a , b வெவ்வேறான இரு மெய்யெண்கள் எனில்,
x, y > 0 , 0 < p < 1 எனில்,
x, y, z > 0 எனில்,
a, b > 0 எனில்,
a, b > 0 எனில்,
a, b, c > 0 எனில்,
a, b > 0 எனில்,
a1, ..., an > 0 எனில்,
குறிப்புகள்
மேற்கோள்கள்
Hardy, G., Littlewood J.E., Pólya, G. (1999). Inequalities. Cambridge Mathematical Library, Cambridge University Press. ISBN0-521-05206-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
Beckenbach, E.F., Bellman, R. (1975). An Introduction to Inequalities. Random House Inc. ISBN0-394-01559-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
Harold Shapiro (2005,1972–1985). "Mathematical Problem Solving". The Old Problem Seminar. Kungliga Tekniska högskolan. {{cite web}}: Check date values in: |date= (help)