ஒரு நேர்ம முழு எண்ணின்தொடர் பெருக்கம் அல்லது காரணியம் அல்லது காரணீயம் (factorial) என்பது அதற்கு சமமாகவும் குறைவாகவும் உள்ள எல்லா நேர்ம முழு எண்களின் பெருக்கல் ஆகும். இது n! எனக் குறிக்கப்படும்.
தொடர் பெருக்கச் செய்கையைக் கணிதத்தில் பல பகுதிகளில் காணமுடியும். குறிப்பாக சேர்மானவியல், இயற்கணிதம், கணிதப் பகுப்பாய்வு என்பவற்றைக் குறிப்பிடலாம். இதன் மிக அடிப்படையாக பயன்பாட்டை, வரிசை மாற்றத்தில், வெவ்வேறான n பொருட்களை n! வழிகளில் தொடராக ஒழுங்குபடுத்தலாம்" என்பதில் காணமுடிகிறது. இந்த உண்மை ஆகப் பிந்தியது 12ம் நூற்றாண்டிலேயே இந்திய அறிஞர்களுக்குத் தெரிந்திருக்கிறது.[2] பிரான்சு நாட்டைச் சேர்ந்த கணிதவியலாளர் கிறித்தியன் கிறாம்ப் என்பவர் n! குறியீட்டை 1808 ஆம் ஆண்டில் முதன் முதலில் அறிமுகப்படுத்தினார்.
வரைவிலக்கணம்
தொடர் பெருக்கச் சார்பு பின்வருமா று வரையறுக்கப்படுகிறது:
அல்லது பின்வரும் தொடர்பின் மூலமும் இது தரப்படலாம்:
அடுக்கு விதியைப் பயன்படுத்தியும் பின்வருமாறு இதை வரையறுக்க முடியும்:
மேற்காட்டிய எல்லா வரைவிலக்கணங்களும் : என்பதை உட்படுத்துகின்றன.
பயன்பாடுகள்
பெரும்பாலும் சேர்மானவியலைச் சேர்ந்தது என்றாலும் கணிதத்தின் பல பிரிவுகளிலுள்ள வாய்ப்பாடுகளில் தொடர் பெருக்கம் காணப்படுகிறது.
வெவ்வேறான n பொருட்களை வெவ்வேறான n! வழிகளில் வரிசைப்படுத்தலாம். அதாவது வெவ்வேறான n பொருட்களின் வரிசைமாற்றங்களின் எண்ணிக்கை n! ஆகும்.
வரிசைப்படுத்தல் தவிர்க்கப்பட வேண்டுமென்பதற்காகப் பெரும்பாலும் தொடர் பெருக்கமானது வாய்ப்பாடுகளில் பகுதியில் காணப்படும்.
எடுத்துக்காட்டு:
n பொருட்கள் கொண்ட கணத்திலிருந்துk பொருட்களைத் தேர்வுசெய்து அவற்றை வரிசைப்படுத்தும் வழிகளின் எண்ணிக்கை:
இந்த வழிகளில் தேர்வுகள் ஒவ்வொன்றிலும் தேர்ந்தெடுக்கப்பட்ட k பொருட்களை வரிசைப்படுத்தக்கூடிய k! வெவ்வேறான வழிகளும் அடங்கும் எனபதால் வரிசைப்படுத்தலைத் தவிர்த்து, n பொருட்கள் கொண்ட கணத்திலிருந்துk பொருட்களின் சேர்வுகளின் எண்ணிக்கைக்கான வாய்ப்பாடு:
n மற்றும் அதைவிடச் சிறியதான அனைத்து பகா எண்களாலும்n! வகுபடும். இதன் விளைவாகக் கிடைக்கும் முடிவுகள்:
n > 5 ஒரு பகு எண்ணாக இருந்தால், இருந்தால் மட்டுமே
p ஒரு பகா எண்ணாக இருந்தால், இருந்தால் மட்டுமே
(வில்சனின் தேற்றம்)
பகா எண்ணாகவும் தொடர் பெருக்கமாகவும் அமையும் ஒரே எண் 2. n! ± 1, என்ற வடிவிலமையும் எண்கள் காரணீயப் பகாஎண்களென அழைக்கப்படுகின்றன.
1! ஐ விடப் பெரிய தொடர் பெருக்கங்கள் அனைத்தும் இரண்டின் மடங்குகளாக இருப்பதால் அவை இரட்டை எண்களாகும். 5! ஐ விடப் பெரிய தொடர் பெருக்கங்கள் அனைத்தும் இரண்டு மற்றும் மடங்குகளாக இருப்பதால் அவை பத்தின் மடங்குகளாக இருக்கும்.
தலைகீழிகளின் தொடர்
தொடர் பெருக்கங்களின் பெருக்கல் தலைகீழிகளாலான தொடர், ஒருங்கும் தொடராக இருக்கும்:
இத் தொடரின் கூடுதல் ஒரு விகிதமுறா எண் என்றாலும், தொடரின் உறுப்பிலுள்ள தொடர் பெருக்கங்களை நேர் முழு எண்களைக் கொண்டு பெருக்கி, தொடரை விகிதமுறு எண்ணைக் கூடுதலாகக் கொண்ட ஒருங்கு தொடராக மாற்றலாம்:
தொடர்பெருக்கம் எதிர் எண்களுக்கு வரையறுக்கப்படாதது போல, இரட்டைத் தொடர்பெருக்கம் எதிர் இரட்டை எண்களுக்கு வரையறுக்கப்படவில்லை; பல்தொடர்பெருக்கம் ஆல் வகுபடும் எதிர் முழுஎண்களுக்கு வரையறுக்கப்படவில்லை.