இயற்கணிதம்![]() இயற்கணிதம் அல்லது அட்சரகணிதம் (Algebra, அரபு மொழியில் al-jabr[1]) கணிதத்தின் ஒரு முக்கியமான பிரிவு ஆகும். எண் கோட்பாடு, வடிவவியல், பகுவியல் ஆகிய பகுதிகளை உள்ளடக்கியது. பொதுவாக இயற்கணிதம் என்பது கணித வடிவங்களைப் பற்றியும், அவற்றை ஆளும் விதிகளைப் பற்றியும் படிப்பதாகும்.[2][3] கணிதம், அறிவியல், பொறியியல் மட்டுமல்லாது மருத்துவம், பொருளியல் போன்றவற்றுக்கும் அடிப்படை இயற்கணிதம் அத்தியாவசியமாகும். இயற்கணிதத்தின் முன்னோடிகளாக அல்-குவாரிசுமி (780 – 850) மற்றும் ஓமர் கய்யாம் (1048–1131) போன்றோர் அறியப்படுகின்றனர்.[4] இயற்கணிதம் எண்களை மட்டும் அடிப்படையாகக்கொண்டு கணிப்பிடும் எண்கணிதத்திற்கு அடுத்த படியாகும். முதலில் கணிதத்தில் எண்கணிதமே கற்பிக்கப்படுகின்றன. ஆகையால் எண்கணிதமே உண்மையில் கணிதத்தின் அரிச்சுவடியாகும். எண்கணிதம் மற்றும் இயற்கணிதம் இரண்டிற்குமுள்ள முக்கிய வேறுபாடு, இயற்கணிதத்தில் கையாளப்படும் மாறிகளும் பொது வடிவத்திற்கான எண்களிற்கான மாறிலிகளுமே. மாறிகளை உபயோகித்து நுண்மமாக (abstract) சிந்தித்து செய்யப்படும் கணிப்புக்களை அடிப்படை இயற்கணிதம் கொண்டுள்ளது. எண்கணிதத்தில் எண்கள் மற்றும் அவற்றைக் கொண்டு செய்யப்படும் அடிப்படைச் செயல்கள் விவரிக்கப்படுகின்றன. அடிப்படை இயற்கணிதத்தில் எண்களுக்குப் பதிலாக x, y போன்ற மாறிகளும், a, b போன்ற மாறிலிகளும் பயன்படுத்தப்பட்டு கணிதச் செயல்கள் மேற்கொள்ளப்படுகின்றன.[5] எடுத்துக்காட்டாக, என்ற சமன்பாட்டில், and எழுத்துகள் மாறிகளாகும், மாறிலி ஆகும். மேலும் இயற்கணிதம் மேன்மேலும் உயர்நிலைக்குச்செல்ல இது விரிவடைந்து பல்வேறு பெயர்களில் பிரிந்து செல்லுகின்றன. இயற்கணிதத்தில் ஆய்வுகளை மேற்கொள்ளும் கணிதவியலாளர் இயற்கணிதவியலாளர் (algebraist) எனப்படுகிறார். அட்சர கணித பிரதியீட்டு முறைஅட்சர கணிதம் என்பது எண்கணித கணிப்பீடுகளுடன் மேலும் பல வரையறைகளுடன் பலவகையான கணிப்பீடுகளை கொண்டது. இதில் எண்களிற்குப்பதிலாக எழுத்துக்களை பிரதி செய்து விடையாக பொதுவான வடிவத்தை - அச்சை - சூத்திரங்களை - வாய்பாட்டை எழுதமுடியும். இன்னுமொரு விசேசித்த வித்தியாசம் என்னவென்றால் இது மறை எண்களை - எதிர் எண்களை உள்ளடக்கிய கணிப்பீட்டை கொண்டது. முன்னர் எண்களிற்குப் பதிலாக தமிழ் எழுத்தக்களையும் தற்போது ஆங்கில, கிரேக்க, இலத்தீன் எழுத்துக்களை பயன்படுத்துகிறோம். பொருள் - விபரம் ஒன்றே.
5 + 5 + 5 = 3 x 5 (மூன்று முறை ஐந்து ) 5 + 5 + 5 = 3 x 5 (மூன்று முறை ஐந்து ). இவை முழுவதும் தெளிவான எண்களில் இருப்பதால் இதனை நாம் 3 x 5 = 15 என்று கணக்கிட முடியும். ஆனால் அட்சர கணிதத்தில் இது மூன்று முறை ஒரே பெறுமதியான எண் கூட்டப்படுவதாகவே கொள்ளப்படும். இதன்படி 5 + 5 + 5 என்பதை a + a + a என எழுதலாம். இதன் பொருள் ஒரு எண் மூன்று முறை கூட்டப்படுகின்றன. இதன் விடையை விளங்கிக்கொள்ள அட்சர கணிதத்தில் உள்ள a ஐ எண்கணிதத்திற்குரிய முறையில் ஒரு தேங்காய் என்று மாற்றி - பிரததியீடு செய்வோம். இப்பொழுது ஒரு தேங்காய் + ஒரு தேங்காய் + ஒரு தேங்காய் என எழுதலாம். விடை மூன்று தேங்காய்கள். அட்சர கணிதத்தில் ஒரு தேங்காய் என்பது தேங்காய் என்று ஒரு என்ற சொல் நீக்கப்பட்டு ஒருமைச் சொல்லாகவே எழுதப்படும். விடையாகிய மூன்று தேங்காய்கள் என்பதும் மூன்று தேங்காய் என்று ஒருமைச் சொல்லாகவே எழுதப்படும். இரண்டு நிலையிலும் தேங்காய் என்று ஒருமைச் சொல்லாகவே வருவதனால் அவற்றை வேறுபடுத்த ஒன்று என்ற முழுமை நிலைக்கு எழுத்தின் முன்னே 1 என்று எழுதப்படுவதில்லை . ஏனைய எல்லா நிலைக்கும் எழுத்தின் முன்னாலே அதன் எண்ணிககை காண்பிக்கவேண்டும். பொருளிற்கோ பன்மை காண்பிக்கப்படுவதில்லை. ஆகவே ஒரு தேங்காய் + ஒரு தேங்காய் + ஒரு தேங்காய் என்பது தேங்காய் + தேங்காய் + தேங்காய் என எழுதலாம். = மூன்று தேங்காய். (விடை) இப்பொழது எண்கணிதத்திற்குரிய விடையை அட்சர கணிதத்தில் கொடுக்கவேண்டும். அட்சர கணிதத்தில் இருந்து எண்கணிதத்திற்கு வர a என்பதை தேங்காய் என மாற்றி பிரதி செய்தோம். இப்பொழுது எதிர் வழியாக செல்வதற்கு எண்கணிதத்தில் இருந்து அட்சர கணிதத்திற்கு வர தேங்காய் என்பதை a என மாற்றி பிரதி செய்யவேண்டும்.) மூன்று தேங்காய் = மூன்று a (தேங்காய் என்பது a என மாற்றி பிரதி செய்யப்பட்டுள்ளது ) = 3 a (மூன்று என்பது 3 என மாற்றி பிரதி செய்யப்பட்டுள்ளது ) 3 a = 3 x a இது ஒரு இடை நிலை. இதுவே விளக்கமாகும். 3 a என்பதே விடையாகும். இங்கே பெருக்கல் அடையாளமாகிய தர அடையாளம் எழுதப்படுவதில்லை. மூன்று தேங்காய் என்பதில் எப்படி தர அடையாளம் தவிர்க்கப்பட்டுள்ளதோ அதேபோல் அட்சர கணிதத்தில் எண்ணிற்கும் எழுத்திற்கும் இடையில் தர அடையாளம் தவிர்க்கப்பட்டவேண்டும். . மூன்று தரம் தேங்காய் என்பதை மூன்று தேங்காய் என்றே தரம் - தர என்பதை தவிர்த்தே சொல்லுகிறோம். தேங்காய் மூன்று என்று வளம்மாறி பேசுவதில்லை. மூன்று தேங்காய் என்பதில் முதலில் மூன்று என்ற எண்ணும் பின்னர் தேங்காய் என்ற சொல்லும் வருகிற ஒழுங்கின்படி அட்சர கணிதத்தில் முதலில் எண்ணும் பின்னர் எழுத்தும் எழுதப்படவேண்டும் . 3a என்பதை a3 என்று வளம்மாறி முடிவு விடையாக எழுதுவது தவறாகும். இடைவரியில் a x 3 (a தர 3)என்று எழுதி கணிக்கப்படலாம். திசை எண்கள்.![]() அட்சர கணிதத்தில் அடுத்த அதி முக்கிய விடயம் திசையெண்களாகும். இது பூச்சியத்தை நியமமாகக்கொண்டு பூச்சியத்திலும் அதிகமான, உயர்வான எண்களை நேர் எண்களாக வகைப்படுத்துகிறது. இவைகள் நாம் பயன்படுத்துகின்ற 1, 2, 3, 4, .... போன்றவற்றுடன் இவற்றிற்கு இடைப்பட்ட உடைப்பெண் ( விகிதம், பின்னம், தசமம் ) களுமாகும். இவற்றை முற்குறி எதுவுமின்றி சாதாரணமாக எழுதுவதைப்போன்றோ அல்லது இலக்கத்தின் முன்னே, மேல் அரைப்பகுதிக்குள் சக என்று அடையாளமிட்டோ எழுதலாம். இந்த "+" சக என்ற முற்குறி கணிப்பீட்டை கூறாமல் நேர்த்திசையை குறிப்பிடும். இதற்கு எதிரானது எதிர்திசை அல்லது மறைதிசை எனப்படும். இதன்படி பூச்சியத்திலும் குறைவான, தாழ்வான எண்கள் மறை எண்களாகும். 'மறை எண்கள் கட்டாயமாக " - " சய என்ற முற்குறியிட்டு எழுதப்படவேண்டும்.' இதற்கு முன்னே ஒன்றும் இல்லாவிடின் " - " சய என்ற முற்குறி மட்டுமே போதுமானது. இதற்கு முன்னே ஏதாவது கணிப்பீட்டை கூறும் அடையாளம் இருப்பின் அந்த இலக்கமும் அதன் முற்குறியும் அடைப்புக்குறிக்குள் எழுதப்படவேண்டும். முற்குறி இலக்கத்தின் முன்னே, மேல் அரைப்பகுதிக்குள் எழுதப்படும். முற்குறி எதுவும் இல்லாவிடின் அவ்வேண் சக என்ற முற்குறிகொண்ட நேர் எண்ணாகும். ஓர் இலக்கத்தின் முன்னே அடுத்தடுத்து வரும் முற்குறியையும் கணிப்பீட்டுக் குறியையும் அதனதன் எதிர் அடையாளமாக மாற்றும்போது அதன் தொகுதியின் பெறுமதி மாறாது. பூச்சியம் திசையெண்ணில் அடங்காது. வரலாறுஎண்களைப்பற்றித் தோன்றிய மனிதனின் எண்ணப்பாதைகளெல்லாம் 1, 2, 3, ... இவைகளினுடைய பரஸ்பர உறவுகளை ஆய்வதில் தான் தொடங்கின. அத்தோன்றல்களின் முதல் பரிமளிப்பு இயற்கணிதம் என்ற பிரிவில் அடங்கும். எண்களைப் பற்றிய சில தேற்றங்கள் கிரேக்க காலத்திய யூக்ளீடின் நூல்களிலும் டயோஃபாண்டஸின் ஆய்வுகளிலும் இருந்தன. ஆனாலும் இயற்கணிதத்தைச் சார்ந்து முதன்முதலில் எழுதப்பட்ட நூல் இந்தியாவில் ஆரியபட்டர் என்ற கணித வல்லுனரால் 5ம் நூற்றாண்டில்)எழுதப்பட்டது. இது பீஜகணிதம் என்று பெயர்கொண்டது. டயோஃபாண்டஸின் 4வது நூற்றாண்டின் ஆய்வுகளைத்தழுவி 9வது நூற்றாண்டில் ஆல்-க்வாரிஜ்மி என்பவர் Hisab al-dschabr wa-l-muqabala என்ற பாரசீக நூலை எழுதினார். பிற்காலத்தில் 13ம் நூற்றாண்டில் "al-jabr" என்ற தலைப்பைக் கொண்ட அரேபிய நூல் இந்தப் பாரசீக நூலிலிருந்து கண்டெடுக்கப்பட்டவை என்று கூறிப் பிரசுரிக்கப்பட்டது. இதன் பெயரை வைத்து இந்தக் கணிதத் துறைக்கு அல்ஜீப்ரா என்ற பெயர் ஏற்பட்டது. 17ம் நூற்றாண்டில் இதனுடைய இலத்தீன் மொழிபெயர்ப்பு Ludus algebrae et almucgrabalaeque என்ற பெயரில் வெளிவந்தது. இதற்குப் பிறகு உலகளாவிய நிலையில் இயற்கணித ஆய்வுகள் முன்னேறின. கிரேக்க காலத்திய இயற்கணிதம்இயற்கணிதம் என்பது ஒரு மொழி. பற்பல குறியீடுகளும் அவைகளை ஒன்றுக்கொன்று எப்படி உறவாட விட வேண்டும் என்பதற்கு சிற்சில விதிகளும் கொண்டதுதான் இயற்கணிதம். ஆனால் இந்தமாதிரி மொழியொன்று பயன்படுவதற்கு அம்மொழிக்கு சரியான குறியீட்டுமுறை (notation) இருந்தாகவேண்டும். அங்குதான் கிரேக்க கணிதம் தவறியது. அவர்களுக்கு எல்லாமே வடிவியல்தான். வடிவியலில் அபாரமான திறமை பெற்றிருந்தார்கள். எண்கள் கூட அவர்களுக்கு ஒருநேர்கோட்டின் அளவுகளே. அதனால் இயற்கணித வழக்கமான 'மாறி' என்ற கருத்து அவர்களுடைய எண்ணங்களுடன் ஒத்துப்போகவில்லை. க்கு வாய்பாடுகள், போன்ற முற்றொருமை உறவுகள் அவர்கள் வடிவியல் மூலம் அறிந்திருந்தார்கள். ஆனாலும் இயற்கணித மாறிகள் மூலம் உறவுகள் உண்டாக்கி அந்த உறவுகளைச் சமாளிக்க அவர்களிடம் நோக்கமோ, சாதனமோ ஏற்படவில்லை. இயற்கணிதத்தில் அவர்களுடைய முன்னேற்றம் மிகக்குறைவாக இருந்ததற்கு இன்னொரு காரணமும் இருந்தது. அதுதான் அவர்களுக்கு முடிவிலிகளைப் பற்றி இருந்த அச்சம்.ஆர்கிமிடீஸ் பை () யினுடைய மதிப்பைக்கண்டுபிடிப்பதற்குப் பயன்படுத்திய முறைக்கு வெளிப்படுத்துகை முறை (Method of exhaustion) என்று பெயர். திருப்பித் திருப்பி ஒரு பலகோணத்தின் பக்கங்களின் எண்ணிக்கையை அதிகப்படுத்திக் கொண்டே போய் அதனுடைய சுற்றளவை விட்டத்தின் நீளத்தால் ஒவ்வொரு முறையும் வகுத்து க்கு மதிப்புகள் கண்டுபிடித்துக் கொண்டுப்போகும் முறைதான் அது.
என்ற கருத்து 'முடிவிலி' என்ற கருத்தோடு முடிச்சிடப்பட்டிருக்கிறது. முடிவிலியின் மேலுள்ள பயத்தால் இந்த 'எல்லை'க்கருத்தை அவர்கள் தங்களுடைய எல்லைக்குள் விடவில்லை போலும்! பழையகால இந்தியாவில் இயற்கணிதம்எண்களை எழுதுவதில் இடமதிப்புத் திட்டத்தை உருவாக்கி வருங்காலக் கணிதக் குறியீட்டுமுறைக்கு அடிகோலியது பழையகால இந்தியா. ஸ்புஜித்வஜர் (3ம் நூற்றாண்டு) எழுதிய 'யவனஜாதகம்' என்ற நூலில் இவ்விடமதிப்புத் திட்டம் பயன்படுத்தப் பட்டிருப்பதைப் பார்க்கலாம். அந்நூலே, காணாமல் போய்விட்ட கிரேக்க ஜோஸிய முறையைப் பற்றி இரண்டாவது நூற்றாண்டில் இந்தியாவில் எழுதப்பட்ட ஒரு உரைநடை நூலின் செய்யுள் நடைமாற்றம்தான். கிறிஸ்து சகாப்தத்தின் முதல் சில நூற்றாண்டுகளில் எழுதப்பட்டதாகக் கருதப்படும் பாக்ஷாலி கையெழுத்துப்பிரதி (70 பக்கங்கள் கொண்டது) ஒன்று 1881 இல் தற்போது பாகிஸ்தானில் உள்ள பெஷாவருக்கருகே கண்டுபிடிக்கப்பட்டது. அதனில் தசம இடமதிப்புத்திட்டமும், சுழிக்குப்பதில் ஒரு புள்ளியும், சரளமாகப் பயன்படுத்தப்பட்டிருக்கிறது. பின்னங்கள், வர்க்கமூலங்கள், நேரியல் ஒருங்கமைச் சமன்பாடு, இருபடியச் சமன்பாடுகள், கூட்டுத்தொடர், பெருக்குத்தொடர்—இவை இடம் பெறுகின்றன. இன்னும் இந்த நூலில், இந்தியாவிலிருந்து அராபியர்கள் எடுத்துச்சென்று 'தங்கமயமான விதி' (Golden Rule) என்று அவர்களால் பெயர் சூட்டப்பட்ட அடிப்படைக் கணித விதி விவரிக்கப் பட்டிருக்கின்றது. கொடுப்பினை-பயன்-இச்சை விதி என்று இதற்குப் பெயரிடலாம். இதைத்தான் ஆங்கிலத்தில் Rule of Three என்று சொல்கிறார்கள். இது என்ன சொல்கிறதென்றால்,
தேரவியலாச் சமன்பாடுகள் (Indeterminate Equations) முதன்முதலில் இந்தியக்கணிதத்தில் எழுத்தில் காணப்படுவது இந்தப் பாக்ஷாலி கையெழுத்துப் பிரதியில் தான். இச்சமன்பாடுகளைப்பற்றி கிரேக்கநாட்டு டயொஃபாண்டஸ் 4ம் நூற்றாண்டில் ஆய்வுகள் செய்திருந்தாலும், இந்தியக்கணித நிபுணர்கள் பிரம்மகுப்தர் (7ம் நூற்றாண்டு), பாஸ்கரர் I (600 - 680), பாஸ்கரர் II (1114-1185) தேரவியலாச் சமன்பாடுகளைப் பற்றிப் பற்பல தீர்வு முறைகளைக் கண்டுபிடித்து எழுதியுள்ளனர். பாஸ்கரர் II வின் சக்ரவாள முறை இன்றும் பயன்பட்டுக் கொண்டிருக்கிறது. ஐரோப்பிய நாடுகளின் பெரும் பங்களிப்பு1619இல் டெகார்டெ வடிவியலை இயற்கணிதச் செயல்பாடாக மாற்றக்கூடிய பகுமுறை வடிவகணிதத்தை அரங்கேற்றினார். வடிவியல் தேற்றங்களை இயற்கணிதக் குறியீடுகளைக்கொண்டு, வடிவங்களையே பார்க்க அவசியமில்லாதபடி, நிறுவமுடியும் என்ற வாய்ப்பை ஏற்படுத்திக் கொடுத்ததால், இயற்கணிதத்தின் பயன்பாடும் தேவைகளும் அதிகப்பட்டன. இந்நூற்றாண்டில்தான் நியூட்டனுடைய வகையீட்டு நுண்கணிதம் கண்டுபிடிக்கப் பட்டது. அதன்படி ஒரு தொடர் வரைவின் சரிவு அச்சார்பின் வகையீட்டுக்கெழுவாக இருக்கும் என்ற முக்கியமான கண்டுபிடிப்பு ஏற்பட்டது. இதனால் பற்பல வரைவுகளின் பண்புகள் அலசப்படத் தொடங்கின. இயற்பியலிலும் பொறியியலிலும் அன்றாட நடைமுறையில் தேவைப்பட்ட சார்புகளின் பெரும, சிறும மதிப்புகள் நுண்கணிதத்தைக் கொண்டு ஆய்வுகளுக் குட்பட்டவுடனே, எல்லாக் கணக்கீடுகளும் கடைசியில் இயற்கணிதச் செயல்பாடுகளில் வந்து முடிந்தன. இயற்கணிதத்தில் பல கணித இயலர்கள் ஈடுபட்டதற்கு இதெல்லாம் காரணமாக அமைந்தன. இயற்கணிதத்தில் ஈடுபாடு என்றவுடனே முதலில் தட்டுப்படும் பிரச்சினை சமன்பாடுகளின் தீர்வு தான். முதற்கண் இயற்கணிதச் சமன்பாடுகள் ஒவ்வொன்றுக்கும் சரியான முழுத்தீர்வு கண்டுபிடிக்கும் முயற்சியே இயற்கணித ஆய்வுகளின் குறிக்கோளாக அமைந்தது. இப்பிரச்சினைக்கு ஒரு மாபெரும் கடைத்தீர்வு 19வது நூற்றாண்டில் தான் கிடைத்தது. ஆனால் இந்த நான்கு நூற்றாண்டுகளில் இயற்கணிதம் இவ்வொரு பிரச்சினையின் தேடுதலினால் கிடைத்த இடைத்தேர்வுகளாலேயே வானளாவிய பெரிய பிரிவாக மலர்ந்து விட்டது. பட்டியல்இந்த வளர்ச்சிக்கு அடிகோலியவர்களின் பட்டியல் எழுதி மாளாது. முக்கியமானவர்கள் (கால வரிசைப்படி):
இயற்கணிதத்தின் இதர முகங்கள்இயற்கணிதத்தின் இன்னொரு முகம் எண் கோட்பாடு. கிரேக்கர்கள் காலத்திலிருந்தே எண்களைப் பற்றிய சிறிய பெரிய பிரச்சினைகள் கணிதத்தில் ஈடுபட்டவர்கள் எல்லோரையும் ஈர்த்தன. அன்றிலிருந்து இன்றுவரை எண்கோட்பாட்டில் மனிதன் கண்ட ஒவ்வொரு முன்னேற்றமும் கணிதத் துறையின், முக்கியமாக இயற்கணிதத் துறையின், தொடுவானத்தை விரிவாக்கிக் கொண்டே போயின. தற்காலத்தில் எண் கோட்பாடே கணிதத்தின் மிகப் பெரிய பிரிவுகளில் ஒன்றாகி விட்டதால் இதைப்பற்றிய தனிக்கட்டுரையில் பார்க்கவும். மற்றொரு முகமான குலக் கோட்பாடும் அப்படி ஒரு பெரிய பிரிவுதான். இருந்தாலும் அது எப்படி உண்டாயிற்று என்று சொல்வதால், இருபதாவது நூற்றாண்டில் ஏற்பட்ட மாபெரும் நுண்புல இயற்கணித வளர்ச்சியின் வேர்களைக் காணலாம். மேற்கோள்கள்
துணைநூல்கள்
|
Portal di Ensiklopedia Dunia