நுண்கணிதத்தில்வகையீடு (differential) என்பது சாரா மாறிx இல் ஏற்படும் மாற்றத்தைப் பொறுத்து சார்பு y = ƒ(x) இன் மதிப்பு அடையும் மாற்றத்தின் முதன்மைப் பகுதியைக் குறிக்கும்.
வகையீடு dy இன் வரையறை:
இங்கு என்பது சார்பு ƒ இன் x ஐப் பொறுத்த வகைக்கெழு, dx ஒரு கூடுதல் மெய்யெண்மாறி (அதாவது x மற்றும் dx ஆகிய இரு மாறிகளில் அமைந்த சார்பு dy).
சார்பு y = ƒ(x) இல் சாரா மாறி x இல் ஏற்படும் நுண்ணளவு மாற்றம் dx ஐப் பொறுத்து y இல் ஏற்படும் நுண்ணளவு மாற்றம் dy ஆக, வகையீடு லைப்னிட்சால் முதன்முதலாக அறிமுகப்படுத்தப்பட்டது. அதன் மூலம் x ஐப் பொறுத்த y இன் கணநேர மாறுவீதம், அதாவது வகைக்கெழு பின்வருமாறு தரப்பட்டது:
இதுவே வகைக்கெழுவிற்கான லைப்னிட்சின் குறியீடாகும்.
இதில் dy மற்றும் dx இரண்டும் அளவில் நுண்ணியளவானவையாக இருந்தாலும் dy/dx இன் மதிப்பு நுண்ணளவினதாக இல்லாமல் ஒரு மெய்யெண்ணாக இருக்கும்.
லைப்னிட்சின் இந்த நுண்ணளவுகளின் பயன்பாடு பரவலாக விமர்சனத்துக்கு உள்ளானது. லைப்னிட்சின் நுண்ணளவுகள் இல்லாமல் வகையீட்டை வரையறுத்தவர் பிரெஞ்சுக்கணிதவியலாளர்அகஸ்டின் லூயிஸ் கோஷி.[1][2] வேறுபாட்டு ஈவுகளின் எல்லையாக வகைக்கெழு வரையறுக்கப்பட்டு, அதிலிருந்து வகையீடு வரையறுக்கப்பட்டது.
இவ்வரையறையில் dy மற்றும் dx முடிவுறு மெய்யெண் மதிப்புகளை எடுக்கும் இரண்டு புது மாறிகள்[3] லைப்னிட்சால் கூறப்பட்டது போல இவை இரண்டும் நுண்ணளவானவை அல்ல.[4] எல்லைகள் குறித்த தற்காலத்திய கருத்துரு கார்ல் வியர்ஸ்ட்ராசினுடையதாக (Karl Weierstrass) இருப்பினும் வகையீடு குறித்த கோஷியின் கருத்து தற்கால பகுவியல் முறைமைகளில் தரமானதாகக் கருதப்படுகிறது.[5][6]
வரையறை
x0 புள்ளியில் சார்பு ƒ(x) இன் வகையீடு.
வகை நுண்கணிதத்தின் நவீன முறைகளில் வகையீடு பின்வருமாறு வரையறுக்கப்படுகிறது:[7]
x எனும் ஒருமாறியில் அமைந்த சார்பு ƒ(x) இன் வகையீடு df , x , Δx ஆகிய இரு சாரா மெய்யெண் மாறிகளில் அமைந்த ஒரு சார்பு.
df(x) அல்லது df என மாறிகளை விட்டுவிட்டும் எழுதலாம். y = ƒ(x) எனில் வகையீட்டை dy எனவும் எழுதலாம்.
dx(x, Δx) = Δx என்பதால் dx = Δx ஆகும். எனவே,
பல மாறிச் சார்புகளின் வகையீடுகள்
x1 மாறியைப் பொறுத்த y இன் பகுதி வகையீடு, x1 இல் ஏற்படும் மாறுதல் dx1 ஆல் y இல் ஏற்படும் மாறுதலின் முதன்மைப் பகுதியாகும்.
x1 ஐப் பொறுத்த y இன் பகுதி வகையீடு:
அனைத்து சாரா மாறிகளைப் பொறுத்த பகுதி வகையீடுகளின் கூடுதல் முழு வகையீடு ஆகும்:
உயர்வரிசை வகையீடுகள்
ஒருமாறியில் அமைந்த சார்பு y = ƒ(x) இன் உயர்வரிசை வகையீடுகள்:[8]
பொதுவாக,
பண்புகள்
வகைக்கெழு, பகுதி வகைக்கெழு, முழு வகைக்கெழு ஆகியவற்றின் பண்புகளிலிருந்து வகையீட்டின் ஒத்த பண்புகளை நேரிடையாகப் பெறலாம். அப்பண்புகள்:[9]
If y = ƒ(x1, ..., xn), மாறிகள் x1, ..., xn அனைத்தும் மற்றொரு மாறி t ஐச் சார்ந்திருந்தால்,
குறிப்புகள்
↑For a detailed historical account of the differential, see Boyer 1959, especially page 275 for Cauchy's contribution on the subject. An abbreviated account appears in Kline 1972, Chapter 40.
↑Cauchy explicitly denied the possibility of actual infinitesimal and infinite quantities (Boyer 1959, pp. 273–275), and took the radically different point of view that "a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as to converge to zero" (Cauchy 1823, ப. 12; translation from Boyer 1959, ப. 273).
↑Boyer 1959, ப. 12: "The differentials as thus defined are only new variables, and not fixed infinitesimals..."
↑Courant 1937i, II, §9: "Here we remark merely in passing that it is possible to use this approximate representation of the increment Δy by the linear expression hƒ(x) to construct a logically satisfactory definition of a "differential", as was done by Cauchy in particular."
Fréchet, Maurice (1925), "La notion de différentielle dans l'analyse générale", Annales Scientifiques de l'École Normale Supérieure. Troisième Série, 42: 293–323, ISSN0012-9593, MR1509268.