கோல்டுபேக்கின் அனுமானம்
கோல்டுபேக்கின் அனுமானம் (Goldbach's conjecture) என்பது கணிதத்தின் எண்கோட்பாட்டிலுள்ள மிகப்பழமை வாய்ந்ததும் நன்கு அறியப்பட்டதுமான தீர்க்கப்படாத சிக்கல்களில் ஒன்றாகும். இந்த அனுமானத்தின்படி, இரண்டைவிடப் பெரியதாகவுள்ள ஒவ்வொரு இரட்டை இயல் எண்ணையும் இரு பகா எண்களின் கூட்டுத்தொகையாக எழுதலாம். 4×1018 க்குக் குறைவான அனைத்து முழுஎண்களுக்கும் இக்கூற்று உண்மையெனக் காட்டப்பட்டிருந்தாலும் இன்னமும் நிறுவப்படாமலேதான் இருக்கிறது.[2] வரலாறுஜூன் 7, 1742 இல் புருசியக் கணிதவியலாளரான கிறிஸ்டியன் கோல்டுபேக் ஆய்லருக்கு எழுதிய கடிமொன்றில் (கடிதம் XLIII) கீழ்வரும் அனுமானத்தை முன்வைத்தார்[3]: தற்போது கைவிடப்பட்ட கருத்தான 'எண் '1' ஒரு பகா எண்' என்ற கருத்தைப் பின்பற்றுபவராகக் கோல்டுபேக் இருந்தார்.[4] அவரது கடிதத்தின் ஓரத்தில் முதலாது அனுமானத்தைத் தரக்கூடிய இரண்டாவது அனுமானத்தையும் எழுதியிருந்தார்:[5]
ஆய்லர் இக்கடிதத்திற்கு, ஜூன் 30 1742 இல் பதில் கடிதம் எழுதினார்.[6] அதில் அவர்கள் இருவருக்கிடையே முன்பு நிகழ்ந்த உரையாடலைக் குறிப்பிட்டிருந்தார், ("... so Ew vormals mit mir communicirt haben ..."), அந்த உரையாடலில், முதல் இரு அனுமானங்களும் பின்வரும் கூற்றிலிருந்து பெறப்படுமென கோல்டுபேக் கூறியதைச் சுட்டியிருந்தார். உண்மையில் இது கோல்பேக்கின் கடிதத்தின் ஓரமாக எழுதப்பட்டிருந்த அனுமானத்திற்குச் சமானமானதாகும்.. ஆய்லர் தனது ஜூன் 30 1742 நாளிட்ட கடிதத்தில் கூறியிருந்தது:[7][8]
தற்காலத்திய '1' பகாஎண்ணல்ல என்ற வரையறையைக் கொண்டு இந்த மூன்று அனுமானங்களுக்கும் ஒத்த கூற்றுகள்: முதல் அனுமானத்தின் தற்கால வடிவம்: இரண்டாம் அனுமானத்தின் தற்கால வடிவம்: ஆய்லர் நினைவுபடுத்திய பழைய உரையாடலின் அனுமானத்தின் தற்கால வடிவம்: மூன்றாவது தற்காலக் கூற்றுதான் (இரண்டாவதற்குச் சமானமானது) இக்காலத்தில் கோல்பேக்கின் அனுமானத்தின் வடிவவாக உள்ளது. இது "கோல்டுபேக்கின் வலுவான அனுமானம்" "கோல்டுபேக்கின் இரட்டை அல்லது இரும அனுமானம்" என்றும் அழைக்கப்படுகிறது. தற்கால இரண்டாவது கூற்றின் பின்வரும் வலுவற்ற வடிவம் "கோல்டுபேக்கின் வலுவற்ற அனுமானம்", "கோல்டுபேக்கின் ஒற்றை அல்லது மும்ம அனுமானம்" என அழைக்கப்படுகிறது: சரிபார்க்கப்பட்ட முடிவுகள்n இன் சிறிய மதிப்புகளுக்கு கோல்டுபேக்கின் வலுவான அனுமானத்தை (அதன்மூலம் வலுவற்ற அனுமானத்தையும்) நேரியாகச் சரிபாக்கலாம். எடுத்துக்காட்டாக, 1938 இல் கணிதவியலாளர் நில்சு பிப்பிங் n = 100000 மதிப்புகள் வரை கோல்டுபேக்கின் அனுமானத்தைச் சரிபார்த்தார்.[9] கணினிகளின் கண்டுபிடிப்பால் n இன் பெரிய மதிப்புகளுக்கும் அனுமானத்தைச் சரிபார்ப்பது சாத்தியமானது; 2013 வரையில், n ≤ 4×1018 மதிப்பிற்கு டி. ஆலிவியரா இ சில்வா என்பவரால் கணினிப் பயன்பாட்டைக் கொண்டு (4×1017 வரை இருமுறை சரிபாக்கப்பட்டது) சரிபார்க்கப்பட்டது. இத் தேடலின்போது, இரு பகாஎண்களின் கூடுதலாக எழுதப்படும்போது அவ்விரண்டில் ஒரு பகாஎண் 9781 ஐ விட சிறியதாக இருக்கும்படியாக அமையக்கூடிய முழுஎண்களில் மிகச்சிறிய எண் 3325581707333960528 எனக் கண்டறியப்பட்டது.[10] கல்லி-கியூகில் மற்றும் டுடெக் இருவரும்[11] (x, x + 9696 log^2 x] (x ≥ 2) இடைவெளியில் இரு ஒற்றைப் பகாஎண்களின் கூடுதலாகவுள்ள எண் இருக்கும் என்ற ரீமான் கருதுகோளின் மீதான முடிவொன்றை நிறுவினர். மேற்கோள்கள்
மேலதிக வாசிப்புக்கு
வெளியிணைப்புகள்
|
Portal di Ensiklopedia Dunia