Діагоналізовна матрицяУ лінійній алгебрі, квадратна матриця A називається діагоналізовною (англ. diagonalizable) якщо вона подібна діагональній матриці, тобто, якщо існує P і її обернена такі, що P−1AP є діагональною матрицею. Якщо V є скінченновимірний векторний простір, тоді лінійне відображення T : V → V називається діагоналізовним якщо у V існує впорядкований базис, в якому T представлене діагональною матрицею. Діагоналізація — процес пошуку відповідної діагональної матриці для діагоналізовної матриці або лінійного відображення.[1] Квадратна недіагоналізовна матриця називається дефектною. ХарактеристикаЗасадничий факт про діагоналізовні відображення і матриці виражається так:
Іншою характеристикою: Матриця або лінійне відображення є діагоналізовною над полем F тоді і тільки тоді коли її мінімальний многочлен є добутком різних лінійних множників над полем F. (Інакше кажучи, матриця діагоналізовна тоді і тільки тоді коли всі її елементарні дільники лінійні.) Наступні достатні (але не необхідні) умови часто корисні.
ДіагоналізаціяЯкщо матрицю A можна діагоналізувати, тобто, тоді: Записуючи P як блочну матрицю її векторів-стовпчиків рівняння подане вище можна записати як Отже стовпчики P є правими власними векторами A, і відповідні діагональні елементи є відповідними власними значеннями. Оборотність P також припускає, що власні вектори лінійно незалежні і утворюють базис для Fn. Це необхідна і достатня умова для діагоналізовності. Вектори-рядки P−1 є лівими власними векторами A. Коли матриця A — ермітова, з власних векторів A можна утворити ортонормований базис для Cn. За таких умов P буде унітарною і P−1 дорівнює ермітово-спряженій від P. ПрикладиДіагоналізовні матриці
Недіагоналізовні матриціЗагалом, матриця повороту не є діагоналізовною над полем дійсних чисел, але всі матриці повороту діагоналізовні над полем комплексних чисел (їх власні значення це 1 і два спряжених комплексних числа). Навіть якщо матриця недіагоналізовна, завжди можна зробити якнайкраще і знайти матрицю з такими самими властивостями, яка містить власні значення на головній діагоналі і або 0-і, або 1-і на наддіагоналі — відома як Жорданова нормальна форма. Деякі матриці недіагоналізовні ні над яким полем, особливо відомі ненульові нільпотентні матриці. Загальніше це відбувається коли не збігаються алгебраїчні і геометричні кратності власних значень. Наприклад, розглянемо Ця матриця недіагоналізовна: не існує матриці U такої, що U−1CU буде діагональною. Насправді, C має одне власне значення (а саме нуль) і його алгебраїчна кратність 2, а геометрична - 1. Деякі дійсні матриці недіагоналізовні над полем дійсних чисел. Наприклад, Матриця B не має дійсних власних значень, отже не існує дійсної матриці Q такої, що Q−1BQ буде діагональною. Але ми можемо діагоналізувати B якщо дозволимо комплексні числа. Дійсно, якщо ми візьмемо тоді Q−1BQ діагональна. Зауважте, що наведені приклади показують, що сума діагоналізовних матриць не обов'язково діагоналізовна. Як діагоналізувати матрицюРозглянемо матрицю Ця матриця має такі власні значення A є 3×3 матрицею з 3 різними власними значеннями; отже, вона діагоналізовна. Зауважте, що якщо існує рівно n різних власних значень у n×n матриці тоді така матриця діагоналізовна. Ці власні значення є значеннями які будуть присутні в діагоналізованій формі матриці A, отже знайшовши власні значення ми діагоналізували A. Ми можемо зупинитися на цьому, але можна перевірити за допомогою власних векторів для діагоналізації A. Власні вектори A такі Можна легко перевірити, що Тепер, нехай P буде матрицею з цими власними векторами як стовпчиками: Неважливо в якому порядку власні векторі в P; зміна порядку власних векторів у P лиш змінює порядок власних значень у діагоналізованій формі A.[2] Тоді P діагоналізує A: Знов зауважимо, що власні значення виринають у діагональній матриці. ЗастосуванняЯкщо матриця діагоналізовна, діагоналізацію можна використати для ефективного обчислення степені A. Припустимо ми з'ясували, що діагональна матриця. Тоді, оскільки добуток матриць є асоціативним, останній вираз легко піддається обчисленню, оскільки містить лише степені діагональної матриці. Див. такожДжерела
Примітки
|
Portal di Ensiklopedia Dunia