Наприклад, , та , є многочленами, але
та не є многочленами.
Многочленом від декількох змінних (багатовимірним многочленом) називається скінченна сума, в якій кожен з доданків є добутком скінченного числа цілих степенів змінних та константи:
В многочлені доданки називаються його членами. Якщо , то називається старшим членом, а його степінь степенем многочлена. Степінь многочлена позначається . Член нульового степеня називається вільним членом.
Ще є нульовий многочлен
(інколи пишуть , щоб підкреслити, що це не рівняння, а тотожність), який не має жодного члена, тому визначення степеня многочлена до нього застосувати не можна. Для зручності вважають, що степінь нульового многочлена дорівнює мінус нескінченності, .
Многочлен нульового степеня називається константою, першого степеня — лінійним, другого степеня — квадратичним, третього степеня — кубічним. Многочлени степеня більше нуля ми будемо називати неконстантними або нетривіальними.
Многочлен з одним членом називається одночленом, з двома членами — двочленом, з трьома — тричленом.
Наприклад, — кубічний тричлен з членами , і , причому — це старший член, а — вільний член.
Операції над многочленами
Сума многочленів є многочленом. Степінь суми многочленів менше або дорівнює максимуму степенів доданків.
Добуток многочленів є многочленом. Степінь добутку многочленів дорівнює сумі степенів співмножників.
Многочлени можна ділити з остачею: якщо — ненульовий многочлен, то будь-який многочлен можна представити у вигляді
Многочлен можна розглядати як функцію від змінної . Число називається коренем многочлена , якщо воно є коренем відповідної функції, тобто якщо . Це рівносильно умові «Многочлен ділиться на двочлен без остачі» (див. теорему Безу).
Якщо ділиться на без остачі, то корінь називається кратним; якщо не ділиться, то простим.
Кратністю кореня називається найбільше число , для якого ділиться на без остачі (таким чином, прості корені — це корені кратності 1).
Якщо неконстантний многочлен можна представити у вигляді , де і — многочлени степеня не нижче першого, то кажуть, що розкладено на нетривіальні множники , . Якщо ж такого представлення не існує, многочлен називають нескоротним.
Зрозуміло, що оскільки
, і ,
то
і .
Якщо якийсь з множників , можна розкласти на нетривіальні множники, то ми продовжимо процес розкладання допоки це можливо.
Оскільки на кожному кроці степінь множників зменшується, цей процес є скінченним.
Отже в результаті ми отримаємо представлення у вигляді
,
де многочлени є нескоротними.
Таке представлення однозначно, з точністю до перестановки множників.
Завало С. Т. (1972). Елементи аналізу. Алгебра многочленів. Київ: Радянська школа. с. 462. (укр.)
Розклад матричних многочленів на множники: монографія / П. С. Казімірський ; [відп. ред. Д. О. Супруненко] ; НАН України, Ін-т приклад. проблем механіки і математики ім. Я. С. Підстригача. — 2-ге вид., виправл. — Львів: ІППММ, 2015. — 282 с. : 1 арк. портр. — Бібліогр.: с. 274—280 (79 назв). — ISBN 978-966-02-7655-0
Перекладач повинен розуміти, що відповідальність за кінцевий вміст статті у Вікіпедії несе саме автор редагувань. Онлайн-переклад надається лише як корисний інструмент перегляду вмісту зрозумілою мовою. Не використовуйте невичитаний і невідкоригований машинний переклад у статтях української Вікіпедії!
Машинний переклад Google є корисною відправною точкою для перекладу, але перекладачам необхідно виправляти помилки та підтверджувати точність перекладу, а не просто скопіювати машинний переклад до української Вікіпедії.
Не перекладайте текст, який видається недостовірним або неякісним. Якщо можливо, перевірте текст за посиланнями, поданими в іншомовній статті.