Оболонкова модель ядраОболо́нкова моде́ль ядра́ — модель ядра атома, в якій нуклони: протони і нейтрони розглядаються як квантові частинки, що рухаються в самоузгодженому центральному потенціалі й мають дискретний енергетичний спектр, подібний до спектру електронів у атомі. Використовуючи принцип Паулі, модель пояснює існування так званих магічних ядер. Розроблена Марією Гепперт-Маєр та Гансом Єнсеном у 1949, за що вони отримали Нобелівську премію за 1963. У рамках моделі нуклони рухаються в центральному потенціалі ядра. Вважається, що вони не взаємодіють між собою. Для правильного опису руху потрібно врахувати спін-орбітальну взаємодію. Як потенціал вибирається потенціал тривимірного гармонічного осцилятора або потенціал Вудса-Саксона. Математична модельЯдро із масовим числом A і зарядовим числом Z загалом описується гамільтоніаном
де M — маса нуклона, — зведена стала Планка, — оператор Лапласа для координат k-го нуклона, — потенціал сильної взаємодії між нуколонами, загалом невідомий. Оскільки задача знаходження енергетичного спектру гамільтоніана з A частинками, де A може буде доволі великим, нереальна, в оболонковій моделі цей гамільтоніан заміняється наближеним, в якому на кожен нуклон діє центральний потенціал:
Якщо використати як центральний потенціал V(r) — гармонічний потенціал:
де — параметр із розмірністю частоти, то кожен нуклон буде описуватися тривимірним гармонічним осцилятором. Спектр одночастинкових збуджень однаковий для всіх нуклонів, однако розраховані рівні повинні заповнюватися з врахуванням принципа Паулі, окремо для протонів та нейтронів. Враховуючи виродженість станів тривимірного гармонічного осцилятора, а також два можливі спінові стани для кожного з нуклонів, число нуклонів на кожній оболонці буде:
що дає магічні числа
Тільки три перші з них правильні, тобто збігаються із експериментальними. Для покращення моделі потрібно врахувати спін-орбітальну взаємодію, яка для нуклонів у ядрі набагато більша від спін-орбітальної взаємодії електронів в атомі. При врахуванні спін-орбітальної взаємодії гамільтоніан записується у вигляді
де — оператор орбітального моменту нуклона, а — оператор спіна нуклона. Спін-орбітальна взаємодія приводить до того, що нуклон притягується до ядра сильніше, коли його спін і орбітальний момент паралельні, і слабше, коли вони антипаралельні. Виродження за орбітальним моментом знімається і рівні нуклонів розщеплюються. Це розщеплення може бути значним і призвести до перегрупування рівнів. Однонуклонний стан характеризується чотирма квантовими числами: головним квантовим числом n, орбітальним квантовим числом l, квантовим числом повного моменту j та магнітним квантовим числом повного моменту . В поданій нижче таблиці стани згруповані за енергетичним квантовим числом . Кількість станів у кожній групі дається числом . Наведено також число нейтронів, які можуть бути в кожній групі — . Для протонів потрібно враховувати додаткову кулонівську взаємодію, тому числа дещо інші.
Підсумовуючи приведені в таблиці результати, ряд магічних чисел набирає вигляду
У дужках вказані «напівмагічні» числа, для яких магічні властивості, тобто особлива стабільність, виражені слабо. Індексами позначені магічні числа тільки щодо числа протонів або нейтронів. Загалом, теорія узгоджується з експериментом. Подальший розвитокУ міру подальшого накопичення експериментальних даних про властивості атомних ядер з'являлися нові факти, які не завжди вкладалися в рамки описаних моделей. Так виникли узагальнена модель ядра (синтез краплинної й оболонкової моделей), оптична модель ядра (пояснює взаємодію ядер із частинками, що налітають) та інші. Література
ПосиланняДив. також
|
Portal di Ensiklopedia Dunia