В теорії категорій з поняттям передпорядку пов'язують зазвичай дві категорії: категорію передпорядків й категорії, які називають передпорядками.
Передпорядки
Категорія називається передпорядком, якщо для будь-яких двох об'єктів існує не більше одногоморфізму Якщо — мала категорія, то на множині її об'єктів можна задати відношення передпорядка за наступним правилом:
З аксіом категорії слідує, що таке відношення буде рефлексивним і транзитивним. Передпорядок — це абстрактна категорія, тобто його у загальному випадку не можна представити як категорію деяких множин із заданою структурою і відображеннями, що зберігають цю структуру.
Передпорядок — це скелетна категорія.
Якщо мала категорія повна в малому, то вона є предпорядком, причому кожна менша множина його елементів має найбільшу нижню грань.
Добуток набору (множини, класу і т. п.) об'єктів предпорядку — це найбільша нижня грань для цього набору. Кодобуток набору об'єктів — це його найменша верхня грань.
Початковий об'єкт у передпорядку , якщо він існує, — це його найменший об'єкт, так що Аналогиічно, термінальний об'єкт передпорядку — це найбільший об'єкт у ньому.
Категорія передпорядків
Категорія передпорядків позначається зазвичай Об'єктами категорії передпорядків є передпорядки (в сенсі категорій), зокрема, множини, на яких задані відношення передпорядку. Морфізми в цій категорії — відображення множин, зберігають відношення предпорядку, тобто монотонні відображення. Розглянемо в підкатегорію малих передпорядків Це конкретна категорія, наділена очевидним унівалентнимзабутливим функтором
який зіставляє кожному малому передпорядку множину його об'єктів, а кожному морфізму — монотонне відображення відповідних множин. Цей функтор створює межі в . Таким чином, аналогічно початковим об'єктом в є порожня множина, термінальним об'єктом — множина з одного елементу, добутком об'єктів — прямий добуток відповідних множин з покомпонентним порівнянням, тощо.