Раціональна поверхняРаціональна поверхня — це поверхня, біраціонально еквівалентна проєктивній площині, або, іншими словами, раціональний многовид[en] розмірності два. Раціональні поверхні є найпростішими з приблизно 10 класів поверхонь класифікації Енрікеса — Кодайри комплексних поверхонь, і це були перші досліджені поверхні. СтруктураБудь-яку неособливу раціональну поверхню можна отримати неодноразовим роздуттям мінімальної раціональної поверхні. Мінімальними раціональними поверхнями є проєктивна площина і поверхні Гірцебруха[en] для або . Інваріанти: Всі плюрироди[en][уточнити] рівні 0 і фундаментальна група тривіальна. 1 0 0 1 1+n 1, 0 0 1 де n дорівнює 0 для проєктивної площини, 1 для поверхонь Гірцебруха[en] і більше від 1 для інших раціональних поверхонь. Група Пікара[en] є непарною унімодулярною ґраткою , за винятком поверхонь Гірцебруха , для яких це парна унімодулярна ґратка . Теорема КастельнуовоГвідо Кастельнуово довів, що будь-яка комплексна поверхня, для якої і (іррегулярність і другий плюрирод) дорівнюють нулю, є раціональною. Це використовується в класифікації Енрікеса — Кодайри для розпізнавання раціональних поверхонь. Зарицький[1] довів, що теорема Кастельнуово істинна також для полів додатної характеристики. З теореми Кастельнуово випливає також, що будь-яка уніраціональна[en] комплексна поверхня раціональна. Більшість уніраціональних комплексних многовидів розмірності 3 і вище не є раціональними. Для характеристики Зарицький[1] знайшов приклад уніраціональних поверхонь (поверхні Зарицького[en]), які не є раціональними. Деякий час було неясно, чи є комплексні поверхні з нульовими і раціональними, але Федеріго Енрікес знайшов контрприклад (поверхня Енрікеса[en]). Приклади раціональних поверхонь
Див. такожПримітки
Література
|
Portal di Ensiklopedia Dunia