Сферична теорема синусів

Сферична теорема синусів установлює пропорційність між синусами сторін a, b, c і синусами протилежних цим сторонам кутів A, B, C сферичного трикутника:

Сферична теорема синусів є аналогом плоскої теореми синусів і перетворюється на останню в границі за малих довжин сторін трикутників порівняно з радіусом сфери.

Доведення
Малюнок до доведення теореми синусів за допомогою проєкцій.

Доведення за допомогою проєкцій.[1]. На малюнку показано сферичний трикутник ABC на сфері радіуса R із центром у точці O. BP — перпендикуляр до площини великого кола, яке проходить через сторону b, BM — перпендикуляр до OC, BN — перпендикуляр до OA. За твердженням, оберненим до теореми про три перпендикуляри, PM — перпендикуляр до OC, PN — перпендикуляр до OA. Зауважимо, що кут PMB дорівнює π — C, крім того, BN = R sin c і BM = R sin a. Далі, проєктуємо BN і BM на BP, маємо:

Аналогічно отримуємо другу рівність.

Доказ, що спирається на вже доведені співвідношення між сторонами та кутами прямокутного сферичного трикутника. Опустимо з вершини C перпендикуляр CD = h на сторону с або її продовження. Виразимо h двома способами з виниклих при цьому прямокутних трикутників ACD і BCD:

Звідси отримуємо пропорцію

до якої аналогічно додаємо відношення третьої пари «сторона-кут».

Історія

Теорему синусів для сферичних трикутників сформульовано й доведено у творах низки математиків середньовічного Сходу, які жили в X столітті — Абу-ль-Вафи, аль-Худжанді та Ібн Ірака[en]. Вона дозволила спростити розв'язання низки задач сферичної астрономії, які раніше розв'язували за допомогою теореми Менелая для чотирибічника.

Див. також

Примітки

  1. Наведено за виданням: Степанов Н.Н. Формулы синусов // Сферическая тригонометрия. — М.—Л. : ОГИЗ, 1948. — С. 29—32. — 154 с.

Література

  • Матвиевская Г. П. Очерки истории тригонометрии. Ташкент: Фан, 1990.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya