Цей список інтегралів (первісних функцій) раціональних функцій. Для повнішого списку інтегралів дивись Таблиця інтегралів.















for

||




![{\displaystyle \int {\frac {dx}{x^{2^{n}}+1}}=\sum _{k=1}^{2^{n-1}}\left\{{\frac {1}{2^{n-1}}}\left[\sin({\frac {(2k-1)\pi }{2^{n}}})\arctan[\left(x-\cos({\frac {(2k-1)\pi }{2^{n}}})\right)\csc({\frac {(2k-1)\pi }{2^{n}}})]\right]-{\frac {1}{2^{n}}}\left[\cos({\frac {(2k-1)\pi }{2^{n}}})\ln \left|x^{2}-2x\cos({\frac {(2k-1)\pi }{2^{n}}})+1\right|\right]\right\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d961dbbe0264f48b1ec1e3ddeb69e9e8d0d83097)
Будь-яка раціональна функція може бути проінтегрована з використанням вищенаведених рівнянь і методу розкладу на прості дроби, тобто декомпозицією раціональної функції в суму функцій вигляду:
.
Див. також
Джерела
- Двайт Г. Б. Рациональные алгебраические функции — интегралы // Таблицы интегралов и другие математические формулы / пер. с англ. Н. В. Леви ; под ред. К. А. Семендяева. — М. : Наука, 1978. — С. 22-40. (рос.)
- Інтегрування раціональних дробів // Вища математика в прикладах і задачах / Клепко В.Ю., Голець В.Л.. — 2-ге видання. — К. : Центр учбової літератури, 2009. — С. 389. — 594 с.