Нехай задано ряд вигляду , де
і для усіх . (Випадок випливає з цього
доведення, якщо вибрати від'ємні члени.)[1]
Доведення збіжності
Доведемо, що обидві часткові суми
з непарною кількістю елементів та
з парною кількістю, збігаються до одного і того ж значення .
Тоді звичайна часткова сума також
збігається до .
Непарні часткові суми спадають монотонно
у той час як парні часткові суми зростають монотонно
Обидва випадки виконуються тому, що значення зменшується монотонно із збільшенням .
Запишемо часткову суму парного порядку так:
Оскільки всі доданки в дужках більші нуля, то послідовність є зростаючою.
З іншого боку можна записати:
тобто .
Запишемо часткову суму парного порядку так:
Оскільки всі доданки в дужках більші нуля, то послідовність є зростаючою. З іншого боку можна записати:
тобто .
Отже, послідовність парних часткових сум є обмеженою і зростаючою, а значить збіжною.
Для непарних часткових сум маємо: і оскільки збігається до нуля, границя існує і рівна границі . Дане число і буде сумою ряду.
Крім того, оскільки — додатні, то .
Таким чином, використовуючи ці факти, можемо сформулювати наступну послідовність нерівностей
Зауважимо, що число є нижньою межею монотонно спадаючої послідовності .
Тоді з теореми Леві про монотонну збіжність випливає, що ця послідовність є збіжною при прямуванні до нескінченності. Збіжність послідовність парних часткових суми доводиться аналогічно.
для будь-якого .
Це означає, що часткові суми знакопереміжного ряду також ``чергуються вище і нижче фінальної границі.
Точніше, коли є непарна (парна) кількість членів, тобто останній член є додатнім (від'ємним), тоді часткова сума знаходиться вище (нижче) кінцевої границі.
Це розуміння негайно приводить до оцінки залишку часткових сум як показано нижче.
Доведення для оцінки залишку часткових сум
Покажемо, що , розглянувши два випадки.
Якщо , тобто непарне, то
Якщо , тобто парне, то
Обидва випадки суттєво використовують останню нерівність, яку було отримано в попередньому доведенні.
З теорем Лейбніца можна оцінити похибку обчислення суми ряду:
Залишок ряду за модулем буде менше першого відкинутого доданку:
Контрприклад
Усі умови ознаки, а саме збіжність до і монотонність, мають виконуватися для того, щоб висновок був справедливим. Наприклад, розглянемо ряд
Знаки чергуються, а елементи прямують до нуля. Однак монотонність відсутня, що не дозволяє застосувати ознаку.
Насправді ряд є розбіжним.
Дійсно, для часткових сум маємо , що є подвоєною частковою сумою гармонічного ряду, який є розбіжним. Таким чином, початковий ряд є розбіжним. Що й треба було довести.
Konrad Knopp (1956) Infinite Sequences and Series, § 3.4, Dover Publications ISBN 0-486-60153-6
Konrad Knopp (1990) Theory and Application of Infinite Series, § 15, Dover Publications ISBN 0-486-66165-2
E. T. Whittaker & G. N. Watson (1963) A Course in Modern Analysis, 4th edition, §2.3, Cambridge University Press ISBN 0-521-58807-3
Ознака Лейбніца // Вища математика в прикладах і задачах / Клепко В.Ю., Голець В.Л.. — 2-ге видання. — К. : Центр учбової літератури, 2009. — С. 513. — 594 с.