Тороїдальний граф — це граф, який можна вкласти на тор; іншими словами, це — граф, вершини якого можна розмістити на торі так, що ребра не схрещуватимуться.
Хроматичне число будь-якого тороїдального графа не перевищує 7[3]; прикладом тороїдального графа з хроматичним числом 7 є повний граф [4]. Хроматичне число будь-якого тороїдального графа без трикутників не перевищує 4[5].
Аналогічно теоремі Фарі, будь-який тороїдальний граф можна побудувати з ребрами у вигляді відрізків у прямокутнику з періодичними межами (тобто протилежні границі квадрата ототожнюються)[6]. Крім того, у цьому випадку може бути застосована теорема Татта[7].
Gortler, Steven J.; Gotsman, Craig; Thurston, Dylan (2006), Discrete one-forms on meshes and applications to 3D mesh parameterization, Computer Aided Geometric Design, 23 (2): 83—112, doi:10.1016/j.cagd.2005.05.002, MR2189438.
Heawood, P. J. (1890), Map colouring theorems, Quarterly J. Math. Oxford Ser., 24: 322—339.
Kocay, W.; Neilson, D.; Szypowski, R. (2001), Drawing graphs on the torus(PDF), Ars Combinatoria, 59: 259—277, MR1832459, архів оригіналу(PDF) за 24 грудня 2004, процитовано 9 травня 2019.