Не дивно, що чимало хто знайшов у тотожності Ейлера містичні значення усіх зразків.
(«These five constants symbolize the four major branches of classical mathematics: arithmetic, represented by 0 and 1; algebra, by i; geometry, by π; and analysis by e. No wonder that many people have found in Euler's formula all kinds of mystic meanings.»)
Тотожність Ейлера викликала багато захоплених відгуків.
Карл Фрідріх Ґаусс говорив, що якщо ця формула не є відразу очевидна для студента, то він ніколи не перетвориться на першокласного математика.[2]
За опитуванням читачів журналу Physics World, що проходило у 2004 році, тотожність Ейлера (разом з рівняннями Максвелла) була названа «Найвеличнішим рівнянням історії»[3]
За думкою Констанс Рід[en], ця тотожність є «найзнаменитішою формулою всієї математики».[4]
Після доведення тотожності Ейлера в лекції, Бенджамін Пірс, відомий математик XIX сторіччя і професор Гарвардського університету, сказав, «Це абсолютно парадоксально; ми не можемо зрозуміти це, і ми не знаємо, що це означає, але ми довели це, і тому знаємо, що це повинно бути істиною.»[5]
Доведення
Демонстрація формули Ейлера у комплексній площині
Тотожність Ейлера випливає із формули Ейлера, що має вид: