傅里叶正弦、余弦变换在数学中,傅里叶正弦和余弦变换是傅里叶变换不使用复数的表达形式。它们最初被约瑟夫·傅里叶使用并仍在某些应用中有所擅长,如信号处理和概率统计。 定义方程 f (t) 的傅里叶正弦变换,有时也被表示为 or ,有
如果 t 代表时间,那么 ω 就是单位时间周期内的频率,但抽象来说,它们可以是互相关联的任何一对变量。 这个变换必须是频率的奇函数,即对所有的 ω: 傅里叶变换中的数值因子仅由它们的乘积定义。为了让傅里叶逆变换公式不包含任何数值因子,因子 2 出现因为对正弦函数有 L2 norm of 方程 f (t) 的傅里叶余弦变换,有时也被表示为或,有 这个变换必须是频率的偶函数,即对所有的 ω: 一些著者[1]仅定义了 t 的偶函数的余弦变换,在这种情形下正弦变换为 0。因为余弦也是偶函数,所以可以使用更简单的公式: 相似地,如果 f 是奇函数,那么余弦变换就为 0 且正弦变换简化为: 傅里叶逆变换按照通常的假设,原始方程 f 可以从变换形式中复原。即 f 和它的两种变换都是绝对可积的。更多不同的假设,参见傅里叶逆变换。 逆公式是[2]: 它有一个优点是所有频率都是正数且所有量都是实数。如果省略变换中的因子 2,那么逆公式通常写为正和负频率的的积分。 用余弦的变换公式,可以再表示为: 这里 f (x + 0) 表示 f 当 x 从上方趋近于零的一边极限。且 f (x − 0) 表示 f 当 x 从下方趋近于零一边的极限。 如果原始方程 f 是偶函数,那么正弦变换就为零;如果 f 是奇函数,那么余弦变换就为零。在任何一种可能中,逆变换方程都可以化简。 与複指数的关系如今用得更为广泛的傅里叶变换的形式是 相关条目参考
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia