离散正弦变换離散正弦變換(DST for Discrete Sine Transform)是一種與傅立葉變換相關的變換,類似離散傅立葉變換,但是只用實數矩陣。離散正弦變換相當於長度約為它兩倍,一個實數且奇對稱輸入資料的的離散傅立葉變換的虛數部分(因為一個實奇輸入的傅立葉變換為純虛數奇對稱輸出)。有些變型裡將輸入或輸出移動半個取樣。 一種相關的變換是離散餘弦變換,相當於長度約為它兩倍,實偶函数的離散傅立葉變換。參考DCT本文有關邊界條件和不同的DCT和DST關聯的一般討論。 應用離散正弦變換常被用來由譜方法解偏微分方程,這時候離散正弦變換的不同的變數對應著兩端不同的奇/偶邊界條件。 定義形式上,離散正弦變換是一個線性的可逆函數,其中R為實數集,或等價的說是一個 方陣。離散正弦變換有幾種稍微不同定義的變形,皆根據以下公式之一把個實數變換到另個實數。 DST-I一個DST-I矩陣為正交矩陣(差一個係數)。 的實數abc的DST-I變換等價於8點實數0abc0(-c)(-b)(-a)(奇對稱)的DFT轉換,再除2(而DST-II~DST-IV等價於DFT有半個取樣的位移)。 因而DST-I對應的邊界條件是:對奇對稱,也對奇對稱;也類似。 DST-IIDST-IIIDST-IV一個DST-IV矩陣為正交矩陣(差一個係數)。 DST V-VIII反變換DST-I的反變換是把DST-I乘以。 DST-IV的反變換是把DST-IV乘以。 DST-II的反變換是把DST-III乘以,反之亦然。 類似離散傅立葉變換,這些定義前面的歸一係數只是習慣,不同人有不同定義。例如有人在變換前面乘,使反變換和變換在形式上更相似,而不需另外的歸一係數。 計算相關條目參考資料
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia