可观测性格拉姆矩阵控制理論中,可观测性格拉姆矩阵(Observability Gramian)是用來判斷線性動態系統是否可觀測的格拉姆矩阵。 若針對以下的線性時變系統
可观测性格拉姆矩阵為 , 其中為狀態轉換矩陣 系統在具有可觀測性,若且唯若為非奇異矩陣, 連續時間,線性非時變系統若在連續時間的線性非時變系統中,也可以定義可观测性格拉姆矩阵(不過也有其他判斷可观测性的方法)。 若考慮以下的系統
其可观测性格拉姆矩阵是以下的方陣
若穩定(所有的特徵值實部均為負),可观测性格拉姆矩阵也是以下李亞普諾夫方程的唯一解
若穩定(所有的特徵值實部均為負),而且也是正定矩陣,則此系統有可观测性。 離散時間,線性非時變系統若考慮以下的離散時間系統
其離散可观测性格拉姆矩阵是以下的方陣
若穩定(所有的特徵值絕對值均小於1),也是以下離散李亞普諾夫方程的解
若穩定(所有的特徵值絕對值均小於1),而且也是正定矩陣,則此系統有可观测性。 參考資料
相關條目外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia