多组态自洽场方法
多组态自洽场方法(Multi-configurational self-consistent field, MCSCF)是量子化学中的一种计算方法,主要用于在哈特里-福克方法和密度泛函理论不足以给出良好的参考态函数的时候(例如,在键断裂过程中,或者分子基态与低激发态能量近简并的情形)产生定量正确的参考态函数。它用一组组态态函数的线性组合来近似真实的电子波函数。在 MCSCF 方法中,既改变组态态函数前的线性组合系数,也改变每一个组态态函数里面的基函数前的线性组合系数,同时改变两者以使能量达到最小值,就得到变分的电子波函数。这个方法可以视作组态相互作用方法和哈特里-福克方法的组合。 MCSCF 波函数经常用作多参考组态相互作用或多参考态微扰理论(如完全活性空间微扰理论)计算的参考态,这些方法可以处理一些很极端的情形,并且,抛开计算资源的限制不谈,这些方法能够在其它方法失效的情况下得到可靠的分子基态与激发态波函数。
完全活性空间自洽场方法一种特别重要的 MCSCF 方法是完全活性空间自洽场方法(CASSCF)。完全活性空间又称为全优化反应空间(full-optimized reaction space),相应的方法称为 FORS-MCSCF。CASSCF 与 FORS-MCSCF是同义词。在 CASSCF 方法中,展开式中包括所有给定数目的电子在给定数目的轨道上分布所得的所有组态态函数。例如,对一氧化氮分子进行 CASSCF(11,8) 计算意味着波函数展开式中包含11个价电子在8个分子轨道上自由分配所能得到的全部状态态函数。 [1][2]
参见参考文献
拓展阅读
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia