希格斯丛数学中,希格斯丛是由全纯向量丛E和希格斯场(在E的自同态丛中取值的全纯1-形式,满足)组成的二元组。Nigel Hitchin (1987)[1]以彼得·希格斯命名了场,因为它与希格斯玻色子相似。卡洛斯·辛普森后来引入了“希格斯丛”这一术语,以及条件(在希钦最初在黎曼曲面上的设置中此条件是空的)。[2] 希格斯丛可视作全纯向量丛上平坦全纯仿射联络的“简化”,其中导数缩放至0。非阿贝尔霍奇对应指出,在合适的稳定性条件下,光滑射影复代数簇上的平坦全纯联络范畴、此簇的基本群表示范畴、此簇上的希格斯丛范畴实际上等价。于是,可由较简单的希格斯丛推导出关于平坦联络的规范理论结果。 历史希格斯丛由希钦 (1987)首次引入,黎曼曲面上的情形。希钦的论文主要讨论秩为2的向量丛(即纤维是2维向量空间)。秩2向量丛是希钦方程中主SU(2)丛的解空间。 针对的是全纯向量丛E在紧黎曼曲面上的理论后由卡洛斯·辛普森推广到底流形为紧凯勒流形的情形。维度设为1时,会退化成希钦的理论。 稳定性希格斯丛理论中,稳定希格斯丛的概念尤为重要。为此要先定义-不变子丛。 在希钦最初的讨论中,若(K是黎曼曲面M上的规范丛),则标记为L的秩1子丛是-不变的。则,当对E的每个-不变子丛L,都有 其中是黎曼曲面上复向量丛度数的通常表示,希格斯丛就是稳定的。 另见参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia