1953年,威廉·冯·艾格斯多林(英语:William von Eggers Doering)和埃德温·多尔夫曼通过氧-18标记的二苯基甲酮进行Baeyer-Villiger氧化反应,阐明了该反应的机理[15]。三种不同的机理理论上分别会得到不同位置的同位素标记产物:克里格中间体的标记仅出现在羰基氧上、过氧化物中间体的标记仅出现在酯结构的烷氧基上、过氧化酮中间体的标记同时会出现在上述二者位置(产物比例为1:1)[15]。标记实验的结果是只观察到符合克里格中间体的产物,因此该路线也成为现今普遍认可的反应机理[1]。
由于反应中使用了过氧化物,因此会将不希望氧化的基团一并氧化。例如,底物中的烯烃(特别是富电子时)和胺,可能被氧化成环氧化合物[21]。不过,已经有研究提出了保护官能团的方法,例如1962年,G. B. Payne在硒催化剂存在时使用过氧化氢将烯基酮氧化成环氧结构,而使用过氧乙酸则得到了酯结构[22]。
^ 3.03.1Crudden, Cathleen M.; Chen, Austin C.; Calhoun, Larry A. A Demonstration of the Primary Stereoelectronic Effect in the Baeyer-Villiger Oxidation of α-Fluorocyclohexanones. Angew. Chem. Int. Ed. 2000, 39 (16): 2851–2855. doi:10.1002/1521-3773(20000818)39:16<2851::aid-anie2851>3.0.co;2-y.
^Yamabe, Shinichi. The Role of Hydrogen Bonds in Baeyer−Villiger Reactions. The Journal of Organic Chemistry. 2007, 72 (8): 3031–3041. PMID 17367197. doi:10.1021/jo0626562.
^Hawthorne, M. Frederick; Emmons, William D.; McCallum, K. S. A Re-examination of the Peroxyacid Cleavage of Ketones. I. Relative Migratory Aptitudes. J. Am. Chem. Soc. 1958, 80 (23): 6393–6398. doi:10.1021/ja01556a057.
^ 15.015.115.2Doering, W. von E.; Dorfman, Edwin. Mechanism of the Peracid Ketone-Ester Conversion. Analysis of Organic Compounds for Oxygen-18. J. Am. Chem. Soc. 1953, 75 (22): 5595–5598. doi:10.1021/ja01118a035.
^ 16.016.116.2Doering, W. von E.; Speers, Louise. The Peracetic Acid Cleavage of Unsymmetrical Ketones. Journal of the American Chemical Society. 1950, 72 (12): 5515–5518. doi:10.1021/ja01168a041.
^Turner, Richard B. Stereochemistry of the Peracid Oxidation of Ketones. J. Am. Chem. Soc. 1950, 72 (2): 878–882. doi:10.1021/ja01158a061.
^Gallagher, T. F.; Kritchevsky, Theodore H. Perbenzoic Acid Oxidation of 20-Ketosteroids and the Stereochemistry of C-17. J. Am. Chem. Soc. 1950, 72 (2): 882–885. doi:10.1021/ja01158a062.
^Cavarzan, Alessandra; Scarso, Alessandro; Sgarbossa, Paolo; Michelin, Rino A.; Strukul, Giorgio. Green Catalytic Baeyer–Villiger Oxidation with Hydrogen Peroxide in Water Mediated by Pt(II) Catalysts. ChemCatChem. 2010, 2 (10): 1296–1302. S2CID 98508888. doi:10.1002/cctc.201000088.
^Schweitzer-Chaput, Bertrand; Kurtén, Theo; Klussmann, Martin. Acid-Mediated Formation of Radicals or Baeyer-Villiger Oxidation from Criegee Adducts. Angewandte Chemie International Edition. 2015, 54 (40): 11848–11851. PMID 26267787. doi:10.1002/anie.201505648.
^Payne, G. B. A Simplified Procedure for Epoxidation by Benzonitrile-Hydrogen Peroxide. Selective Oxidation of 2-Allylcyclohexanone. Tetrahedron. 1962, 18 (6): 763–765. doi:10.1016/S0040-4020(01)92726-7.
^ten Brink, Gerd-Jan; Vis, Jan-Martijn; Arends, Isabel W. C. E.; Sheldon, Roger A. Selenium-Catalyzed Oxidations with Aqueous Hydrogen Peroxide. 2. Baeyer−Villiger Reactions in Homogeneous Solution. J. Org. Chem. 2001, 66 (7): 2429–2433. PMID 11281784. doi:10.1021/jo0057710.
^LIU Yujia; XIA Changjiu; LIN Min; ZHU Bin; PENG Xinxin; LUO Yibin; SHU Xingtian. Stannosilicate molecular sieve: a new star in heteroatom incorporated zeolite family 39 (2): 605–615. 2020.
^Ferrini, Paola; Dijkmans, Jan; Clercq, Rik De; Vyver, Stijn Van de; Dusselier, Michiel; Jacobs, Pierre A.; Sels, Bert F. Lewis acid catalysis on single site Sn centers incorporated into silica hosts. Coordination Chemistry Reviews. 2017, 343: 220–255. doi:10.1016/j.ccr.2017.05.010.
^Corma, A; Navarro, MT; Nemeth, L; Renz, M. Sn-MCM-41—a heterogeneous selective catalyst for the Baeyer-Villiger oxidation with hydrogen peroxide. Chemical Communications. 7 November 2001, (21): 2190–1. ISSN 1364-548X. PMID 12240094. doi:10.1039/B105927K.
^Sheng, Dawei; Ballou, David P.; Massey, Vincent. Mechanistic Studies of Cyclohexanone Monooxygenase: Chemical Properties of Intermediates Involved in Catalysis. Biochemistry. 1 September 2001, 40 (37): 11156–11167. ISSN 0006-2960. PMID 11551214. doi:10.1021/bi011153h.
^Polyak, Iakov; Reetz, Manfred T.; Thiel, Walter. Quantum Mechanical/Molecular Mechanical Study on the Mechanism of the Enzymatic Baeyer–Villiger Reaction. Journal of the American Chemical Society. 8 February 2012, 134 (5): 2732–2741. ISSN 0002-7863. PMID 22239272. doi:10.1021/ja2103839.
^Fiorentini, Filippo; Geier, Martina; Binda, Claudia; Winkler, Margit; Faber, Kurt; Hall, Mélanie; Mattevi, Andrea. Biocatalytic Characterization of Human FMO5: Unearthing Baeyer–Villiger Reactions in Humans. ACS Chemical Biology. 15 April 2016, 11 (4): 1039–1048. ISSN 1554-8929. PMID 26771671. doi:10.1021/acschembio.5b01016.
^ 34.034.1Fürst, Maximilian J. L. J.; Gran-Scheuch, Alejandro; Aalbers, Friso S.; Fraaije, Marco W. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catalysis. 6 December 2019, 9 (12): 11207–11241. doi:10.1021/acscatal.9b03396.
^Levine, Seymour D.; Adams, Richard E.; Chen, Robert; Cotter, Mary Lou; Hirsch, Allen F.; Kane, Vinayak V.; Kanojia, Ramesh M.; Shaw, Charles; Wachter, Michael P.; Chin, Eva; Huettemann, Richard; Ostrowski, Paul. Zoapatanol and Montanol, Novel Oxepane Diterpenoids, from the Mexican Plant Zoapatle (Montanoa tomentosa). J. Am. Chem. Soc. 1979, 101 (12): 3405–3407. doi:10.1021/ja00506a057.
^Kane, Vinayak V.; Doyle, Donald L. Total Synthesis of (±) Zoapatanol: A Stereospecific Synthesis of a Key Intermediate. Tetrahedron Lett. 1981, 22 (32): 3027–3030. doi:10.1016/S0040-4039(01)81818-9.
^Kane, Vinayak V.; Doyle, Donald L. Total Synthesis of (±) Zoapatanol. Tetrahedron Lett. 1981, 22 (32): 3031–3034. doi:10.1016/S0040-4039(01)81819-0.