最小上界![]() 最小上界,亦称上确界(英語:Supremum,记为sup S)是数学中序理论的一个重要概念,在格论和数学分析等领域有广泛应用。 定义给定偏序集合(T,≤),对于S⊆T,S的上确界sup(S)定义为S的所有上界组成的集合的最小元(若有)。即sup(S)满足:
上确界也被称为最小上界、lub 或 LUB,在格论中也被称为并,在序理论中S的上确界也被记为S。
数学分析中的上确界在数学分析中,实数的集合S的上确界或最小上界记为 sup(S),并被定义为大于或等于 S 中所有成员的最小实数。实数的一个重要性质是它的完备性:实数集合的所有非空子集是有上界的就是这个实数集合成员的上确界。 例子这个有理数的集合的上确界是个无理数,这意味着有理数是不完备的。 此外,如果我们定义在 S 是空集的时候 sup(S) = −∞ 和在 S 没有上界的时候 sup(S) = +∞ ,则实数的所有集合都在扩展的实数轴上有上确界。 如果上确界属于这个集合,则它是这个集合的最大元素。术语极大元在处理实数或任何其他全序集合的时候是同义的。 要证明 a = sup(S),必须证明 a 是 S 的上界并且 S 的任何其他上界大于 a;等价地,也可以证明 a 是 S 的上界并且小于 a 的任何数都不是 S 的上界。 参考文献
外部链接参见 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia