树 (数据结构)
![]() 在計算機科學中,樹(英語:tree)是一种抽象数据类型(ADT)或是實作這種抽象数据类型的数据结构,用來模擬具有樹狀結構性質的数据集合。它是由n(n>0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
术语
树的种类
存储父节点表示法存储结构
基本操作设已有链队列类型LinkQueue的定义及基本操作(参见队列)。 构造空树清空或销毁一个树也是同样的操作 void ClearTree(PTree *T)
{
T->n = 0;
}
构造树void CreateTree(PTree *T)
{
LinkQueue q;
QElemType p,qq;
int i=1,j,l;
char c[MAX_TREE_SIZE]; /* 临时存放孩子节点数组 */
InitQueue(&q); /* 初始化队列 */
printf("请输入根节点(字符型,空格为空): ");
scanf("%c%*c",&T->nodes[0].data); /* 根节点序号为0,%*c吃掉回车符 */
if(T->nodes[0].data!=Nil) /* 非空树 */
{
T->nodes[0].parent=-1 ; /* 根节点无父节点 */
qq.name=T->nodes[0].data;
qq.num=0;
EnQueue(&q,qq); /* 入队此节点 */
while(i<MAX_TREE_SIZE&&!QueueEmpty(q)) /* 数组未满且队不空 */
{
DeQueue(&q,&qq); /* 节点加入队列 */
printf("请按长幼顺序输入节点%c的所有孩子: ",qq.name);
gets(c);
l=strlen(c);
for(j=0;j<l;j++)
{
T->nodes[i].data=c[j];
T->nodes[i].parent=qq.num;
p.name=c[j];
p.num=i;
EnQueue(&q,p); /* 入队此节点 */
i++;
}
}
if(i>MAX_TREE_SIZE)
{
printf("节点数超过数组容量\n");
exit(OVERFLOW);
}
T->n=i;
}
else
T->n=0;
}
判断树是否为空Status TreeEmpty(PTree *T)
{ /* 初始条件:树T存在。操作结果:若T为空树,则返回TRUE,否则返回FALSE */
return T->n==0;
}
获取树的深度int TreeDepth(PTree *T)
{ /* 初始条件:树T存在。操作结果:返回T的深度 */
int k,m,def,max=0;
for(k=0;k<T->n;++k)
{
def=1; /* 初始化本节点的深度 */
m=T->nodes[k].parent;
while(m!=-1)
{
m=T->nodes[m].parent;
def++;
}
if(max<def)
max=def;
}
return max; /* 最大深度 */
}
获取根节点TElemType Root(PTree *T)
{ /* 初始条件:树T存在。操作结果:返回T的根 */
int i;
for(i=0;i<T->n;i++)
if(T->nodes[i].parent<0)
return T->nodes[i].data;
return Nil;
}
获取第i个节点的值TElemType Value(PTree *T,int i)
{ /* 初始条件:树T存在,i是树T中节点的序号。操作结果:返回第i个节点的值 */
if(i<T->n)
return T->nodes[i].data;
else
return Nil;
}
改变节点的值Status Assign(PTree *T,TElemType cur_e,TElemType value)
{ /* 初始条件:树T存在,cur_e是树T中节点的值。操作结果:改cur_e为value */
int j;
for(j=0;j<T->n;j++)
{
if(T->nodes[j].data==cur_e)
{
T->nodes[j].data=value;
return OK;
}
}
return ERROR;
}
获取节点的父节点TElemType Parent(PTree *T,TElemType cur_e)
{ /* 初始条件:树T存在,cur_e是T中某个节点 */
/* 操作结果:若cur_e是T的非根节点,则返回它的父节点,否则函数值为"空"*/
int j;
for(j=1;j<T->n;j++) /* 根节点序号为0 */
if(T->nodes[j].data==cur_e)
return T->nodes[T->nodes[j].parent].data;
return Nil;
}
获取节点的最左孩子节点TElemType LeftChild(PTree *T,TElemType cur_e)
{ /* 初始条件:树T存在,cur_e是T中某个节点 */
/* 操作结果:若cur_e是T的非叶子节点,则返回它的最左孩子,否则返回"空"*/
int i,j;
for(i=0;i<T->n;i++)
if(T->nodes[i].data==cur_e) /* 找到cur_e,其序号为i */
break;
for(j=i+1;j<T->n;j++) /* 根据树的构造函数,孩子的序号>其父节点的序号 */
if(T->nodes[j].parent==i) /* 根据树的构造函数,最左孩子(长子)的序号<其它孩子的序号 */
return T->nodes[j].data;
return Nil;
}
获取节点的右兄弟节点TElemType RightSibling(PTree *T,TElemType cur_e)
{ /* 初始条件:树T存在,cur_e是T中某个节点 */
/* 操作结果:若cur_e有右(下一个)兄弟,则返回它的右兄弟,否则返回"空"*/
int i;
for(i=0;i<T->n;i++)
if(T->nodes[i].data==cur_e) /* 找到cur_e,其序号为i */
break;
if(T->nodes[i+1].parent==T->nodes[i].parent)
/* 根据树的构造函数,若cur_e有右兄弟的话则右兄弟紧接其后 */
return T->nodes[i+1].data;
return Nil;
}
输出树void Print(PTree *T)
{ /* 输出树T。加 */
int i;
printf("节点个数=%d\n",T->n);
printf(" 节点 父节点\n");
for(i=0;i<T->n;i++)
{
printf(" %c",Value(T,i)); /* 节点 */
if(T->nodes[i].parent>=0) /* 有父节点 */
printf(" %c",Value(T,T->nodes[i].parent)); /* 父节点 */
printf("\n");
}
}
向树中插入另一棵树Status InsertChild(PTree *T,TElemType p,int i,PTree c)
{ /* 初始条件:树T存在,p是T中某个节点,1≤i≤p所指节点的度+1,非空树c与T不相交 */
/* 操作结果:插入c为T中p节点的第i棵子树 */
int j,k,l,f=1,n=0; /* 设交换标志f的初值为1,p的孩子数n的初值为0 */
PTNode t;
if(!TreeEmpty(T)) /* T不空 */
{
for(j=0;j<T->n;j++) /* 在T中找p的序号 */
if(T->nodes[j].data==p) /* p的序号为j */
break;
l=j+1; /* 如果c是p的第1棵子树,则插在j+1处 */
if(i>1) /* c不是p的第1棵子树 */
{
for(k=j+1;k<T->n;k++) /* 从j+1开始找p的前i-1个孩子 */
if(T->nodes[k].parent==j) /* 当前节点是p的孩子 */
{
n++; /* 孩子数加1 */
if(n==i-1) /* 找到p的第i-1个孩子,其序号为k1 */
break;
}
l=k+1; /* c插在k+1处 */
} /* p的序号为j,c插在l处 */
if(l<T->n) /* 插入点l不在最后 */
for(k=T->n-1;k>=l;k--) /* 依次将序号l以后的节点向后移c.n个位置 */
{
T->nodes[k+c.n]=T->nodes[k];
if(T->nodes[k].parent>=l)
T->nodes[k+c.n].parent+=c.n;
}
for(k=0;k<c.n;k++)
{
T->nodes[l+k].data=c.nodes[k].data; /* 依次将树c的所有节点插于此处 */
T->nodes[l+k].parent=c.nodes[k].parent+l;
}
T->nodes[l].parent=j; /* 树c的根节点的父节点为p */
T->n+=c.n; /* 树T的节点数加c.n个 */
while(f)
{ /* 从插入点之后,将节点仍按层序排列 */
f=0; /* 交换标志置0 */
for(j=l;j<T->n-1;j++)
if(T->nodes[j].parent>T->nodes[j+1].parent)
{/* 如果节点j的父节点排在节点j+1的父节点之后(树没有按层序排列),交换两节点*/
t=T->nodes[j];
T->nodes[j]=T->nodes[j+1];
T->nodes[j+1]=t;
f=1; /* 交换标志置1 */
for(k=j;k<T->n;k++) /* 改变父节点序号 */
if(T->nodes[k].parent==j)
T->nodes[k].parent++; /* 父节点序号改为j+1 */
else if(T->nodes[k].parent==j+1)
T->nodes[k].parent--; /* 父节点序号改为j */
}
}
return OK;
}
else /* 树T不存在 */
return ERROR;
}
删除子树Status deleted[MAX_TREE_SIZE+1]; /* 删除标志数组(全局量) */
void DeleteChild(PTree *T,TElemType p,int i)
{ /* 初始条件:树T存在,p是T中某个节点,1≤i≤p所指节点的度 */
/* 操作结果:删除T中节点p的第i棵子树 */
int j,k,n=0;
LinkQueue q;
QElemType pq,qq;
for(j=0;j<=T->n;j++)
deleted[j]=0; /* 置初值为0(不删除标记) */
pq.name='a'; /* 此成员不用 */
InitQueue(&q); /* 初始化队列 */
for(j=0;j<T->n;j++)
if(T->nodes[j].data==p)
break; /* j为节点p的序号 */
for(k=j+1;k<T->n;k++)
{
if(T->nodes[k].parent==j)
n++;
if(n==i)
break; /* k为p的第i棵子树节点的序号 */
}
if(k<T->n) /* p的第i棵子树节点存在 */
{
n=0;
pq.num=k;
deleted[k]=1; /* 置删除标记 */
n++;
EnQueue(&q,pq);
while(!QueueEmpty(q))
{
DeQueue(&q,&qq);
for(j=qq.num+1;j<T->n;j++)
if(T->nodes[j].parent==qq.num)
{
pq.num=j;
deleted[j]=1; /* 置删除标记 */
n++;
EnQueue(&q,pq);
}
}
for(j=0;j<T->n;j++)
if(deleted[j]==1)
{
for(k=j+1;k<=T->n;k++)
{
deleted[k-1]=deleted[k];
T->nodes[k-1]=T->nodes[k];
if(T->nodes[k].parent>j)
T->nodes[k-1].parent--;
}
j--;
}
T->n-=n; /* n为待删除节点数 */
}
}
层序遍历树void TraverseTree(PTree *T,void(*Visit)(TElemType))
{ /* 初始条件:二叉树T存在,Visit是对节点操作的应用函数 */
/* 操作结果:层序遍历树T,对每个节点调用函数Visit一次且仅一次 */
int i;
for(i=0;i<T->n;i++)
Visit(T->nodes[i].data);
printf("\n");
}
孩子链表表示法存储结构/*树的孩子链表存储表示*/
typedef struct CTNode { // 孩子节点
int child;
struct CTNode *next;
} *ChildPtr;
typedef struct {
ElemType data; // 节点的数据元素
ChildPtr firstchild; // 孩子链表头指针
} CTBox;
typedef struct {
CTBox nodes[MAX_TREE_SIZE];
int n, r; // 节点数和根节点的位置
} CTree;
森林、树与二叉树的转换见二叉树相应章节 外部链接
参考文献 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia